

PREFACE

There has been a growing demand for a book that will give detailed
information required to make effective use of the PLUS 4 and the
C-16. This book originally published in Germany has enjoyed a huge
success and excellent reviews. ANCO took an early decision to give
these computers our whole hearted support. Towards this objective, we
decided to get this book translated and publish it. We hope that you
will make good use of mine of information available in this book.

ANCO

August'l986.

Clé AND PLUS 4 REFERENCE BOOK
CONTENTS

1. INTRODUCTION eoveececrconcoccsosnsscascascsscasssanaansl

2. GRAPHICS
2.1 Standard GraphiCS seeesessescsasessscsssesscsscasessl
2.2 Graphic Possibilities Of TED secevsesctscccsccsceesb
2.3 Free Programmable Character Set..ceeecesccsascccesd?
2.4 High Resolution GraphiCS.eeesscceesseccessnsacesssll
2.5 Multicolour GraphiCS.eeeeceeccccecccecscscacacscseal?
2.6 Extended Colour GraphiCS...ecececcecsceescacsoecesesl
2.7 SOFEt SCTOLIING.eeusseeeesesenosncessonesesnnannsesdd
2.8 Raster Interrupteceeessessecreascsorsecsccsannceedd

2.9 TEChﬁiCGl Details Of TED‘Chip.....................4&

3. SOUND
3.1 Music Using BASIC COMMANGSecsesessscacccscscecsassld’
3.2 The Sound Registers Of TEDeiseeeoeessscnscscssesssd0

3.3 Interrupt Controlled MuSiCeceveeeecccscanenncsassddl

4.

MACHINE CODE

4.1 Introduction To Machine CO08.eecvescascscacasoeasedd
4,2 Examples Of The Most Important CommandS...ce.eeee..56
4.3 The Commands Of The 7501 ProCESSOT.eeesceeeasseses?0
4,4 Use Of The Kernal RoutineS..eeeeesecesecssccsseess?d
4,5 MEMOTY Ma3Deseessesesssnnsssoncsscsssscsssnnncasealdd
4.6 TED Chip MEmOTY MAPeeseesccsssescsosesscessnnssessl80
4.7 KERNAL Jump TablE.seeeaocssooasocsncnacssanannasslBl
4.8 Comparison Chart CBM~64 and C=l6ccccecescsscscessl87
UTILITIES

5.1 Random Selection Generator In Machine Code.......196
5.2 Joystick Selection In Machine CodB.eeeeceaceaasssal99
5.3 Turbo Mode FOT The C-l6ieceeicaststscncccscscssssea200
5.4 OLD (Recovery Of A Programme After NEW)..ceeeee..201
5.5 MERGE (Linking Of Programmes)..cseeeeeccscesscesss203
5.6 VARLIST (List OF All Used VariableS).eecseeesessa205
5.7 CROSS (Gives Cross Reference For BASIC Commands).206
APP;NDIX

6.1 Tokens Of BASIC KeyWOTdS.eeeeeosoesseccsaoaanssss208

1. INTRODUCTION

In 1984 Commodore introduced two computer models the C-16 and 1ihe
Plus 4, which inspite of excellent performance remain in the shadow
of the bestseller C-64. In this book, we would like to show you that
these models are grossly underestimated, because they offer among
other things an extremely efficient BASIC (much better than that of
the C-64), excellent graphic possibilities (320 x 200 points in 121
colours), expansion facilities and an ever increasing software base
at very reasonable prices.

The main points in this book are subjects which are insufficiently or
not at all dealt with in the manual supplied with the computers. It
is, therefore, for all those people who want to broaden their
knowledge of BASIC and by using the machine code want to make use of
all the possibilities of the C-16, specially with regard to graphics
and sound.

To make things easier, I will only talk about the C-16 in this book
since the Plus/4 1is identical (keyboard, RAM) apart from small
differences. Should differences occur, I will point them out to you.

After reading this book you will know your computer better and will
be able to programme more effectively. I have endeavoured to make the

subjects more interesting with numerous examples since, as everybody
knows, one picture says more than a thousand words.

FRITZ SCHAFFER 1986

Page 1

2. GRAPHICS

One of the most impressive characteristics of all home computers are
without doubt the graphics which can be created with these machines.
This is one of the C-16's strongest points, because which other home
computer offers a resolution of 320 x 200 points in 121 coloyrs
supported by a very efficient BASIC command set. The only handicap of
the C-16 without memory expansion when programming graphics is the
limited work store of 16K RAM of which 12K is available for BASIC.
Very detailed graphics in many colours need a lot of space in any
computer. When working in the high resolution graphics mode, the C-16
has to reserve 10K for the graphics memory which only leaves 2K RAM
for the actual BASIC programme. If you want to write larger
programmes in high resolution graphics (and don't have a Plus/4 with
64K built in RAM), you should consider buying a 16 K or 64 K RAM
expansion. In the following chapters, I want to show you that you can
also programme excellent graphics with the C-16 with the normal
memory of 16K RAM. After all, almost all commercial game programmes
are based on the basic version and amongst them are surely a few
which appear to have a large memory but in fact don't.

Page 2

2.1 STANDARD-GRAPHICS

The easiest way to create graphics on the C-16 is to use the existing
character set which can be obtained from the keyboard by using the
COMMODORE- and the SHIFT key. The graphics do not use any additional
store space and are therefore mainly suitable for longer programmes
with simple graphic requirements.You can display all symbols on the
keyboard in 121 different colours, either reverse or flashing. By
choosing the right symbols, many things can be displayed easily and
quickly e.g. playing cards, rectangles etc.

Normally these graphics are programmed in BASIC with PRINT commands,
consisting of the graphic symbols and the colour etc. In some cases
it may be more convenient (or unavoidable) to write the required
characters directly into the graphics store of the C-16. If for
example you try to write a character at bottom right hand corner of
the screen (line 25,column 40), you will find that the screen scrolls
back to the top after the PRINT command, and the bottom right-hand
corner becomes free again. This problem, however, can be solved
easily and quickly with a direct entry into the graphics store.

Let us first have a loock at how the C-16 administers the screen
internally. Two memory spaces belong to each of the 1000 (40x25)
representable characters in the RAM of the C-16. In one is the
internal sign code (the so-called Video-RAM) in the other one the
colour (Colour-RAM). The Video-RAM is in the memory from 3072
onwards, the Colour-RAM from 2048 onwards; the code of the first
character (top left, so-called HOME-position) is stored at 3072 and
the colour at 2048. The next code in Ram is for the character to the
right of the first position and so on to the end of the first line.
The easiest way to illustrate this is with the following summary:

Page 3

VIDEO-RAM (3072-4071)

Column: 1 2 3 .o 38 39
Line:
1 3072 3073 3074 ... 3109 3110
2 3112
3 3152
23 3952
24 3992

25 4032 4033 4034 ... 4069 4070

COLOUR-RAM (2048-3047)

Column 1 2 3 eee 38 39
Line:
1 2048 2049 2050 ... 2085 2086
2 2088
3 2128
23 2928
24 2968

25 3008 3009 3010 ... 3045 3046

Page 4

40

3991
4031
4071

40

———— ———

2967
3007
3047

You will find the coding of the individual characters in the appendix
of your manual. The letter A is stored in Video~-RAM as value 1. The
value which is stored in the Colour RAM, consists of the colour, the
brightness and the information whether the character is to be
flashing or not. The following short programme erases the screen and
writes a red flashing heart at the bottom right cornmer of the screen:

100 SCNCLR
110 POKE 4071,83
120 POKE 3047,184

The current cursor position is not changed by direct writing on to
the screen and colour memory; also the unwelcome scrolling (see
above) ceases.

Page 5

2.2 THE GRAPHIC POSSIBILITIES OF TED

In this chapter, we will mainly deal with the TED registers which are
responsible for the graphics. Before we go into the details, I will

give you an idea of the graphic possibilities the TED-chip of the
C-16 offers:

*

Free programmable character set with 256 characters

E

Creation of reverse characters by software or hardware

%

Standard- and Multicolour Characters

* Extended Colour Mode

*

Standard Hires Bitmap Mode

*

Multicolour Bitmap Mode
* Programmable Scanning Interrupt

In the following chapters we will discuss all these possibilities and
explain them with example programmes.

Page 6

2.3 FREE PROGRAMMABLE CHARACTER SET

As you have already learnt in chapter 2.1 the easiest and least
memory space consumiccccecephics possibility of the C-16 is the use of
the existing graphics characters. With this you can display max. 128
characters as well as further 128 reverse characters, totalling 256.
Unfortunately you may not often find the required character even
among these 256 and might ask yourself if it is possible to define a
character yourself. The answer in short is YES - it 1is possible!
because you can tell the TED-chip where to get it's information for
creating own characters.

Normally TED receives its information for the character set from a
special ROM, the so-called Character-ROM, whiich contains the
standard characters. If you now tell the TED-Chip to retrieve Iits
information from RAM, you can define your own characters. Luckily the
TED-Chip offers two possibilities for a character set of your own:
firstly you can define the complete character set, i.e. 256 new
characters or it is possible to only define 128 characters new and
the reverse characters can be created by the TED-Chip itself. The
latter has the big advantage that storing space is saved which 1is
very limited in our C-16. Therefore instead of 2K RAM for a complete
256 character set,we only need 1K RAM for 128 characters.

Let us therefore mainly deal with the second possibility because with
128 self-defined characters almost every problem can be solved. Let's
have a look how a character is made up: it always consists of a
Matrix of 8x8 points. If we look at the letter A it gives the
following picture:

*%
ses see

HHNH
LI L
LA
. L 4 .
JHRARAR
L2 I 2
* L] *

*% %%
. L))

%* ¥ *%

90 0000

An asterisk * always stands for a visible, and a point . for an

Page 7

invisible pixel. Within this 8x8 Matrix we can create all sorts of
characters. Before creating and trying out new characters it is
advisable to first copy the existing characters from ROM into RAM and
then replace some of the characters which won't be needed with your
own characters. In the following chapter, first the character set is
copied into RAM and then the relevant area protected from overwriting
by a BASIC Programme. The "8" sign of the standard ch. set is
replaced by the degree symbol and demonstrated in a short sentence.
Please key in the following example:

100 POKE 55,0 : POKE 56,60 : CLR
110 POKE 1177,62

120 FOR I=0 TO 1023

130 : POKE 60%256+1,PEEK(53248+1)
140 NEXT I

150 POKE 1177,63

160 POKE 65299,60

170 POKE 65298,192

180 POKE 1351,128

190 FOR I=0 TO 7

200 : READ A

210 : POKE 60%256+I,A

220 NEXT I

230 SCNCLR

240 CHAR 1,6,12,"TEMPERATURE IS 248C"
250 CHAR 1,2,23,"PLEASE KEY FOR NORMAL CHARACTER SET"
260 GETKEY K$

270 POKE 65299,208

280 POKE 65298,196

290 POKE 1351,0

300 DATA 24,36,36,24,0,0,0,0

Now a line by line explanation of this programme:

100 Reserve memory space for character set

110 Switch PEEK-routine to ROM-Read

120-140 Copy character set (1K) into RAM

150 Switch PEEK-routine to RAM-Read

160 Character-Set address to 60%256 = 15360 ($3C00 hex)
170 Read character set from RAM instead of ROM

180 Switch-of f CBM/SHIFT key (make it non-optional)

Page 8

190-220 Poke character definition into RAM

230 Erase screen
240-250 Print text on screen
260 wWait for key

*If you press any key, your degree symbol is replaced by @ from
normal ch. set.

270-280 Back to normal character set

290 Switch-on CBM/SHIFT key

300 Character definition for degree symbol. This data is used by
lines 190-220.

Page 9

2.4 HIGH RESOLUTION GRAPHICS

When writing games, drawing schedules for business use or writing
other programmes, you will sooner or later require a high resolution
screen presentation.

The Commodore C-16 is tailor made for this: High Resolution is
possible by "Bit-Mapping" the screen. "Bit-Mapping" is the method
whereby each pixel on the screen gets its own Bit in the memory. If
this memory bit is one, the corresponding pixel is switched on. If
bit is a zero, the pixel is switched off.

Working with high resolution graphics has, however, a few
disadvantages and is therefore not always used. By Bit-Mapping the
whole screen, considerable memory space is taken up. Each pixel
requires a memory bit , i.e. you need 1 Byte for 8 pixel. Since each
character consists of a 8x8 Matrix and 40 lipes x 25 columns are
available , the resolution is 320 x 200 pixel. That makes 64000
pixel, of which each requires a memory bit. For Bit-Mapping the whole
screen you will therefore need 8000 Bytes.

In order to understand the disadvantages of the Hires-Mode, please
key En the following example. You will see that you get unwanted
colour effects. This happens because the C-~16 can in Hires-Mode only
show one foreground and one background colour in each 8x8 field. If
you try to write on an already used 8x8 field again it changes
colour. This is exactly what our demo does:

100 GRAPHIC 1,1

110 FOR X=0 TO 190 STEP 10

120 : COLOR 1, ((X/10) AND15)+1,5
130 BOX 1,X,X,X+16,X+10,,1

140 NEXT X

150 FOR X=0 TO 192 STEP 8

160 : COLOR 1,((X/8)AND15)+1,5
170 : BOX 1,X+64,X,X+80,X+8,,1
180 NEXT X

190 COLOR 1,1,0 : CHAR 1,1,20"KEY PLEASE"
200 GETKEY K$: GRAPHIC O

Page 10

A possible remedy for this problem is supplied by the
Multicolour-Mode which will be discussed in the next chapter. As an
example for the Hires-Mode we will present you with a
Mini-Drawing-Program in machine language. All those, who know little
or nothing about machine language, should now study chapter 4 before
starting with the following program. If you are familiar with
computer language and the Clé built-in monitor as far as being able
to key in the program and store it , then you should have no problem
with the following program. We have provided a disassembled listing
for easier understanding of the program. You can start the program in
machine language by: Gl000. Please remember to SAVE the machine
program first before trying it out! The operation of the drawing
program is very simple: you can draw lines in all directions with the
joystick (in port 2). Keeping the FIRE button pressed on the
joystick, you can erase the lines again by going over them. You can
erase your whole work of art by using the SPACE bar.

For advanced machine language programmers, this program can be used
as a starting point for own creations.

Dont' be shy, the C-16 can't do more than crash.

>1000 00 0B 10 00 00 9E 34 31 fueeeescdd
>1008 31 32 00 00 00 00 00 00 :12.¢.44
>1010 A9 36 8D 06 FF A9 C8 8D :)6.)h.
>1018 12 FF 20 EA 10 A2 00 A9 : j.".)
>1020 33 9D 00 08 9D 00 09 9D :3......
>1028 00 OA 9D 00 0B A9 05 9D :....)..

1030 00 OD 9D 00 OD 9D 00 OF :Teeeoceas
>1038 9D 00 OF CA DO E1 86 D6 :r...Jjp!.v
>1040 A9 AQ 85 D5 D9 64 85 D4 :r) .u)$.t
>1048 E8 86 D2 20 E4 FF C9 20 :r(.r $2i

>1050 DO 03 20 EA 10 20 C5 10 :rp. *. e.
>1058 DO 02 E6 D2 AS DO FO 33 :rp.&r¥p03
>1060 30 1C A5 D5 18 €9 Ol 85 :r0.%u.)..
>1068 AA A5 D6 69 00 85 D6 :TU*%V)..V
>1070 FO 21 EO 40 90 1D A9 00 :r0! @..).

%3838

Page 11

>1078 85 D5 85 D6 FO 15 38 A5 :r.u.v0.8%
>1080 D5 E9 01 85 D5 A5 D6 E9 :ru)..u%v)
>1088 00 BO 06 A9 3f 85 D5 A9 :r.0.)?.u)
>1090 01 85 D6 A5 D1 FO 1B 30 :r..v%q0.0
>1098 OE A4 D4 C8 CO C8 DO 02 :r.$thenp.
>10A0 AO 00 84 D4 4C B2 10 A5 :r ..tl12.%
>10A8 D4 38 ES 01 BO 02 A9 C7 :rt8).0.)g
>10B0 85 D4 AS D2 4A 20 02 11 :r.t%rj ..
>10B8 A2 OF AO FF 88 DO FD CA :r". ?2.p=j
>10C0 DO F8 4C 4B 10 78 A9 FD :rp8lk.8)=
>10C8 8D 08 FF AD 08 FF A0 00 :r..?-.7? .
>10D0 A2 00 4A BO Ol 88 4A BO :r".j0..j0
>1008 01 C8 4A BO Ol CA 4A BO :r.hj0.jj0
>10EQ Ol E8 86 DO 84 D1 29 08 :r.(.p.q).
>10E8 58 60 A9 00 85 D7 A9 20 :TX)..w)
>10F0 85 D8 A2 20 A0 00 98 91 :r.x" ...
>10F8 D7 88 DO FB E6 D8 CA DO :rw.p;&xjp
>1100 F6 60 BO 0B 20 1A 11 BD :r6 O. ..=
>1108 64 11 31 D7 91 D7 60 20 :r$.lw.w
>1110 1A 11 BD 5C 11 11 D7 91 :r..=£..w.
>1118 D7 60 A5 D4 29 07 A8 A5 :rw %t).(%
>1120 D4 29 F8 85 D7 A9 00 06 :rt)8.w)..
>1128 D7 2A 06 D7 2A 06 D7 2A :Tw*.w*.w*
>1130 85 D8 85 D3 A5 D7 OA 26 :T.xX.S¥wW.&
>1138 D3 OA 26 D3 65 D7 85 D7 :rs.&s¥w.w
>1140 A5 D8 65 D3 85 D8 A5 D5 :r%x%s.x%u
>1148 29 07 AA A5 D5 29 F8 65 :I).*%u)8%
>1150 D7 85 D7 A5 D6 65 D8 69 :Tw.wkv¥x)
>1158 20 85 D8 60 80 40 20 10 :r .x .8 .
>1160 08 04 02 01 7F BF DF EF :r....?? /
>1168 F7 FB FD FE DB 20 37 20 :r7;=>[7
Now SAVE the programme on a cassette or disc by the command.

S"HIGHRESDRAW",01,1001,116C (Cass.)
S"HIGHRESDRAW",08,1001,116C (Disc)

. 1010 A9 36 LDA #$36
. 1012 8D 06 FF STA $FFO06
. 1015 A9 C8 LDA #3$C8
. 1017 8D 12 FF STA $FF12
. 101A 20 EA 10 JSR $10EA
. 101D A2 OO LDX #$00

Page 12

101F
1021
1024
1027
102A
102D
102F
1032
1035
1038
103B
103C
103E
1040
1042
1044
1046
1048
1049
1048
- 104E
1050
1052
1055
1058
105A
105C
105E
1060
1062
1064
1065
1067
1069
106A
106C

. 106E

1070

. 1072

1074
1076
1078

A9
9D
9D
9D
90
R9
90
90
9D
oD
CA
DO
86
RS
85
RS
85
E8
86
20
C9
DO
20
20
DO
E6
AR5
FO
30
A5
18
69
85
AA
A5
69
85
FO
EO
90
A9
85

33
00
00
00
00
05
00
00
00
00

El
Dé
RO
D5
64
D4

D2
E4
20
03
EA
C5
02
D2
DO
33
1C
D5

0l
D5

D6
00
Dé
21
40
1D
00
D5

08
09
0A
0B

0cC
aD
03
OF

FF

10
10

LDA #3$33

STA $0800, x
STA $0900, x
STA $0A0O, X
STA $0B0O, x

LDA #$05

STA $0C00, x
STA $0D0O, x
STA $OE0O, x
STA $OFOO, x

DEX

BNE $101F
STX $D6
LDA #$A0-
STA $D5
LDA #$64
STA $D4
INX

STX $D2
JSR $FFE4
CMP #$20
BNE $1055
JSR $10EA
JSR $10C5
BNE $105C
INC $D2
LDA $DO
BEQ $1093
BMI $107E
LDA $D5
CLC

ADC #$01
STA $D5
TAX

LDA $D6
ADC #$00
STA $D6
BEQ $1093
CPX #$40
BCC $1093
LDA #$00
STA $D5

Page 13

107A

. 107C
. 107E

107F
1081
1083
1085
1087
1089
1088
108D
108F
1091
1093
1095
1097
1099
1098
109C
109E
10A0
10A2
10A4
10A7
10A9
10AA
10AC
10AE

. 10BO

10B2

. 10B4

1085
10B8

. 10BA

108C

. 10BD

10BF
10C0
10c2
10C5

. 10Cé

10C8

85
FO
38
A5
E9
85
A5
E9
BO
A9
85
A9
85
AS
FO
30
A4
;]
co
DO
A0
84
4C
A5
38
E9
BO
A9
85
AS
4A
20
A2
AO
88
DO
CA
DO
4C
78
A9
8D

D6
15

D5
01
D5
Dé
00
06
3F
D5
01
D6
D1
1B
OE
D4

C8
02
00
D4
B2
D4

01
02
c7
D4
D2

02
OF
FF
FD

F8
4B

FD

10

11

10

STA $D6
BEQ $1093
SEC

LDA $D5
SBC #$01
STA $D5
LDA $D6
SBC #$00
BCS $1091
LDA #$3F
STA $D5
LDA #$01
STA $D6
LDA $D1
BEQ $10B2
BMI $10A7
LDY $D4
INY

CPY #$C8
BNE $10A2
LDY #$00
STY $D4
IMP $10B2
LDA $D4
SEC

SBC #$01
BCS $10B0
LDA #$C7
STA $D4
LDA $D2
LSR

JSR $1102
LDX #$0F
LDY #$FF
DEY

BNE $10BC
DEX

BNE $10BA
IMP $104B
SEI

LDA #$FD

08 FF STA $FO8

Page 14

10CB

. 10CE

10D0
10D2
1003
10D5

. 10D6

10D7
1009
10DA
10DB
10DD
10DE

. 10DF

10E1
10E2
10E4
10E6
10E8
10E9
10EA
10€eC
10EE
10FO
10F2

. 10F4
. 10F6
. 10F7

10F9
10FA
10FC
10FE
10FF
1101
1102
1104
1107
110A
110C
110E
110F
1112

AD
RO
A2
4A
BO
88
4A
BO
c8
4R
BO
CA
4A
BO
E8
86
84
29
58
60
A9
85
RS
85
A2
AO
98
91
88
DO
E6
CA
DO
60
BO
20
BD
31
91
60
20
BD

08 FF LDA $FFO8

00
a0

01

0l

0l

01

DO
D1
08

00
D7
20
D8
20
00

D7

FB
D8

D6

0B
1A
64
07
D7

1A
5C

11
11

11
11

LDY #$00
LDX #$00
LSR

BCS $10D6
DEY

LSR

BCS $10DA
INY

LSR

BCS $10DE
DEX

LSR

BCS $10E2
INX

STX $DO
STy $D1
AND #$08
CLI

RTS

LDA #3$00
STA $D7
LDA #$20
STA $D8
LDX #$20
LDY #$00
TYA

STA ($D7),Y

DEY

BNE $10F7
INC $D8
DEX

BNE $10F7
RTS

BCS $110F
JSR $111A

LDA $1164,X
AND ($D7),Y
STA ($D7),Y

RTS
JSR $111A

LDA $115C,X

Page 15

. 1115 11 D7 ORA ($D7),Y
. 1117 91 D7 STA ($D7),Y
. 1119 60 RTS

. 111A A5 D4 LDA $D4

. 111C 29 07 AND #$07

. 111E A8 TAY

. 111F A5 D4 LDA $D4

. 1121 29 F8 AND #$F8

. 1123 85 D7 STA $D7

. 1125 A9 00 = LDA #$00

. 1127 06 D7 ASL $D7

. 1129 2A ROL
. 112A 06 D7 ASL $D7
. 112C 2A - ROL
. 1120 06 D7 ASL $D7
. 112F 2A ROL

. 1130 85 D8 STA $D8
. 1132 85 D3 STA $D3
. 1134 A5 D7 LDA $D7

. 1136 OA ASL
. 1137 26 D3 ROL $D3
. 1139 O0A ASL

. 113A 26 D3 ROL $D3
. 113C 65 D7 ADC $D7
. 113E 85 D7 STA $07
. 1140 A5 D8 LDA $D8
. 1142 65 D3 ADC $D3
. 1144 85 D8 STA $D8
. 1146 A5 D5 LDA $D5
. 1148 29 07 AND #$%07
. 1147 AA TAX

. 114B A5 D5 LDA $D5
. 114D 29 F8 AND #$F8
. 114F 65 D7 ADC $D7
. 1151 85 D7 STA $D7
. 1153 A5 D6 LDA $D6
. 1155 65 D8 ADC $D8
. 1157 69 20 ADC #%$20
. 1159 85 D8 STA $D8
. 1158 60 RTS

>115C 80 40 20 10 08 04 02 01 :r.@

Page 16

2.5 MULTICOLOUR-GRAPHICS

Because of the standard high resolution graphics, you can even
address individual pixels on the screen. There are two values for
each pixel in the character memory: a 1 for "on" and 0 for "off". If
a pixel has the value 1, it will be shown in the colour chosen by you
at the chosen screen position. With high resolution graphics all
pixels within an 8x8 matrix can be shown either in the foreground or
background colour. Thus the colour resolution within this area is
limited, There could for example be problems if two lines with
different colours cross (see last example in previous chapter).

This problem is solved by the Multicolour-Mode. Each pixel can have
one of four colours: screen colour (background register 0,65301),
background colour 1 (65302), background colour 2 (65303) or the
character colour. The only restriction is in the horizontal
resolution, since in the Multicolour-Mode each pixel is twice as wide
as in Hires-Graphics. The advantages of the Multicolour-Mode,
however,prevail by far. Here is a first example:

100 GRAPHIC 3,1

110 COLOR 0,1,0 : COLOR 1,3,0 : COLOR 2,8,7 : COLOR 3,13,4
120 FOR C=3 to 1 STEP -1

130 : FOR A=0 TO 180 STEP 10

140 : CIRCLE C,20+C*30,100,10,50,,,A,20

150 : NEXT A

160 NEXT C

170 COLOR 1,2,7 : CHAR 1,1,20,"PLEASE KEY"

180 GETKEY K$: DRAW 0,0,100 to 159,100

190 GETKEY K$ ¢ GRAPHIC O

EXPLANATION LINE BY LINE:

110 Definition of background colour 0, foreground colour,back-
ground colours 1 & 2

120 Draw in each of the three colours

Page 17

130 Draw ovals at different angles
140 Draw oval

150 Next angle

160 Next colour

170 Character colour on white, print text
180 Wait for key. Draw line.

190 Wait for key. Back to normal text mode.

As you can see the three circles are drawn in different colours
without showing after-colourings. This effect appears only if you key
in another colour. In practice (and in most commercial games) mostly
this graphic mode is mostly used. It among other things also allows
for the programming of Software-Sprites (more about this later).

Because of the limited memory it is also useful in this mode to work
with self-defined characters. But you have to consider that text
fade-ins are not so easily possible since the integral character set
in the C-16 is designed for the normal mode. That is why the letters
often look a bit odd. This can be avoided by a character set of your
own. In contrast to the normal mode the multicolour characters do not
use a Bit for a pixel each, but 2 Bits determine the colour.
Therefore only 4 pixel are available widthwise (hence the resolution
of 160x200). The coordination of the colours to the Bit combinations
table is shown below.

BITS COLOUR SOURCE

0o Background O (65301)
0l Background 1 (65302)
10 Background 2 (65303)
11 Foreground

Page 18

Let's look at the following self defined character, where we have
chosen as background colour O (HO) black, background colour 1 (H1)
red, background colour 2 (H2) yellow and foreground colour (VO)
green:

BIT SAMPLE COLOUR SOURCE COLOURS

00 01 10 OC HO H1 H2 HC black red yellow black
00 11 11 GC HO VO VO HO black green green black
0l 10 01 10 H1 H2 Hl H2 red yellow red vyellow
0111 11 10 H1 VO VO H2 red green green yellow
01 10 01 10 H1 H2 H1 H2 red yellow red yellow
01 10 01 10 H1 H2 Hl H2 red yellow red yellow
0l 10 01 10 H1 H2 Hl H2 red yellow red yellow
00 00 0C 00 HO HO HO HO black black black black

The following example copies again the normal character set into RAM
and then creates own Multicolour-Characters for a butterfly:

100 POKE 55,0 : POKE 56,60 : CLR
110 POKE 1177,62

120 FOR I=0 TO 1023

130 : POKE 60*256+I,PEEK(53248+1)
140 NEXT I

150 POKE 1177,63

160 POKE 65299,60

170 POKE 65298,192

180 POKE 65287,24

190 POKE 1351,128

Page 19

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

POKE 65302,0 : POKE 65303,93

FOR I=0 TO 15

¢+ READ A

: POKE 60%256+8*40+1,A

NEXT I

SCNCLR

PRINT TAB(5)CHR$(154)"HALLO BUTTERFLY"
PRINT:PRINT TAB(10)"()"SPC(10)CHR$(153)"()"
CHAR 1,2,23,"KEY FOR NORMAL CHARACTER SET"
GETKEY K$

POKE 65299,208

POKE 65298,196

POKE 65287,8

POKE 1351,0

DATA 196,241,237,237,253,253,241,193

DATA 76,60,236,236,252,252,60,12

EXPLANATION LINE BY LINE

100

110

Reserve memory space for character set

Switch PEEK-routine to ROM-read

120-140 Copy character set (1K) into RAM

150

160

170

180

190

Switch PEEK-routine to RAM-read

Character set address to 60*256 = 15360 ($3C00)

Read character set out of RAM instead of ROM

Switch-on Multicolour-Mode

Switch-of f CBM/SHIFT key

Page 20

200 Background colour 1 on black, 2 on light blue no. 5

210-240 Poke character definition of butterfly into RAM

250 Erase screen

260-280 Print text and butterflies

290 Wait for key

300-320 Restore standard values

330 Switch-on CBM/SHIFT key

340-350 Character definition for Multicolour butterfly

Finally two examples for animated graphics as well as a Multicolour
version of the mini drawing program. First we alter the previous
butterfly demo by defining 3 different butterflies and portray these
alternately, i.e. in the sequence: 1,2,3,2,1,2,3,2,1,... thereby
creating the impression that the butterfly is moving.

The 2nd example shows the use of the SHAPE~commands of the C-16 which
allow a Sprite-like animation in the Multicolour-Mode.

The 3rd example is a Multicolour-variant of the mini drawing program
which you saw in the previous chapter. This time you can choose
between the 3 Multicolour-Colours by pressing a button and clear the
screen by using the space bar.

Page 21

100
110
120

130

140
150
160
170
180
190
200
210
220

230

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
500
520

POKE 55,0 : POKE 56,60 : CLR

POKE 1177,62

FOR I=0 TO 1023

POKE 60%256+1,PEEK(53248+1)

NEXT I

POKE 1177,63

POKE 65299,60

POKE 65298,192

POKE 65287,24

POKE 1351,128 |

POKE 65302,0 : POKE 65303,93

FOR I=0 TO 47

: READ A

POKE 60%256+8%40+1,A

NEXT I

SCNCLR

PRINT TAB(6)CHR$(154)"HALLO BUTTERFLY"
CHAR 1,1,23,"KEY FOR NORMAL CHARACTER SET™"
Y=24 : Y1=24

GET K$: IF K$<O"" THEN PRINT CHR$(144) : goto 360
A$="()" : GOSUB 410

A$="*4 ¢ GOSUB 410

A$=",-" : GOSUB 410

A$="*4" ¢ GOSUB 410

GOTO 290

GETKEY K$

POKE 65299,208

POKE 65298,196

POKE 65287,8

POKE 1351,0

END

CHAR 1,12,Y1,* "

CHAR 1,12,Y,CHR$(154)+A$

CHAR 1,18,Y1," "

CHAR 1,18,Y,CHR$(153)+A$

Yl=Y : Y=Y-1 : IF Y<O THEN Y=24

RE TURN

DATA 196,241,237,237,253,253,241,193
DATA 76,60,236,236,252,252,60,12,52,49 57 61,61,49,49,49
DATA 112,48, 176 240,240,48,48,48,4,3,3,3,3,3,3,3
DATA 64,0,0,0,0,0,0,0

Page 22

Explanation line by line:

100 Reserve memory space for character set

110 Switch PEEK-routine to ROM-read
120-140 Copy character set (1K) into RAM

150 Switch PEEK-routine to RAM-read

160 Character set address at 60%256 = 15360 ($3C00)
170 Read character set from RAM instead of ROM

180 Switch-on Multicolour-Mode

190 Switch-of f CBM/SHIFT key

200 Background colour 1 : black, 2 : light blue no. 5

210-240 Poke character definition of butterfly into RAM
250 Erase screen

260-270 Print text

280 Start of butterflies on bottom screen edge
290 Wait for key. If yes, finish progiam.

300 1. Create variant of butterfly

310 2. " " " "

320 3. " " " "

330 4. " " " "

340 Back to start of loop

350-400 Normal colours, end of program

Page 23

410

420

430

440

450

460

Write two spaces in previous position of right butterfly
Colour blue, show right butterfly
Write two spaces in previous position of left butterfly
Colour green, show left butterfly
Move Y1 one line.If at top,then start again at bottom.

Sub-program finish

470-520 Definition of the 3 variants of butterfly.

Here is the 3rd example, the mini drawing program, which you already

know from the Hires chapter, in Multicolour

>1000
>1008
>1010
>1018
>1020
>1028
>1030
>1038
>1040
>1048
>1050
>1058
>1060
>1068
>1070
>1078
>1080
>1088
>1090
>1098

00
31
RS
a7
CE
08
00
ao
CA
A3
A9
20
CE
D2
DO
R9
A9
D5
06
D5

0B 10 00 00 9E 34 31 $Te.....4l
32 00 00 00 00 00 00 :rl2......
36 8D 06 FF A9 18 8D :T)6..7)..
FF A9 C8 8D 12 FF 20 :T.?)h..?

10 A2 00 A9 33 9D 00 :rn.".)3..
9D 00 09 9D 00 OA 9D :Teeeeeese
0B A9 52 9D 00 OC 9D :Tee)Teews
OD 9D 00 OF 9D 00 OF :Teeeaeees
DO E1 A9 30 8D 15 FF :rjp!)0..%
77 8D 16 FF E8 86 D2 :r)7..2(.T
50 85 D6 A9 64 85 D5 :r)p.v)$.u
E4 FF C9 20 DO 03 20 :r $7i p.

10 20 A9 10 08 E6 :rn.).p.&
A5 D2 29 03 85 D2 A5 :rr%r)..r%
18 65 D6 c9 FF DO 04 :rp.%vi?p.
SF DO 06 C9 AD 90 02 :r).p.i ..
00 85 D6 A5 D1 18 65 :I)..v%q.%
CS FF DO 04 A9 C7 DO :rui?p.)gp
C9 C8 S0 02 A9 00 85 :r.ih..)..
20 E6 10 A2 OF AO FF :ru &."“. ?

S8*&

Page 24

>10A0
>10A8
>10B0
>10B8
>10C0
>10C8
>10D0
>10D8
>10EQD
>10E8
>10F0
>10F8
>1100
>1108
>1110
>1118
>1120
>1128
>1130
>1138
>1140
>1148

SAVE t

88
10
08
01
0l

85
AO
E6
29
D7
06
85
26
65
OA
20
D6
11
R6
D7
AA

he

DO
78
FF
88
CA
D1

D7
00

D8
07
A9
D7
D3
D3
D3
26
65
29
85
D2
60
FF

FD
R9
AO
4A
4A
29
A9
98
CA
A8
00
2A
AS
65
85
D4
D8
03
D3
3D
3F
AA

CA
FD
0o
BO
BO
08
20
91
0o
RS
85
06
D7
D7
D8
65
65
AA
BD
46

AA

DO F8 4C 58
8D 08

A2
01
01
58
85
D7
Fé6
D5
D4
D7
OA
85
A5
D7
D4
Bl
42
11
F3
AA

a0
c8
E8
60
D8
88
60
29
06
2A
26
b7
D6
85
85
D7
11
05
FC
AA

FF
4A
4R
86
A9
A2
DO
AS
f8
D7
85
D3
AS
29
D7
D8
3D
49
D3
00
AA

prog. on Cass. or

S"MULTIDRAW",01,1001,114A

S"MULTIDRAW",08,1001,114A

. 1010
. 1012
. 1015
. 1017
. 101A
. 101C
. 101F
. 1022
. 1024
. 1026

A9 36 LDA #$36
8D 06 FF STA $FF06
A9 18 LDA #$18
8D 07 FF STA $FF07
A9 C8 LDA #3$C8
8D 12 FF STA $F12
20 CE 10 JSR $10CE
A2 G0 LDX #$00
A9 33 LDA #$33

AD
BO
BO
DO
00
20
FB
D5
85
2R
D8
OA
D8
FC
A9
A5
42
FF
91
55

AA :

:T.p=jp8lx
iT.8)=..7-
ir.? "0
:r..jo.hjo
:r. jj0. (.p
ir.q).x).
ITW) X"

T ...W.P;
:T&x jp6 %u
:r). (%u)8.
TW) . tow¥
sT.w*,w¥, X
:T.S%W.&S.
sT&SHW . WhX
1T%S. X%V)<
T &t%w.w)
:T %x%t.x%
:TV) . *lw=b
tTe.S=D.17?
sr&r=f..s.

sTw 703<.u
****9

Disc

9D 00 08 STA $0800,X

(Cass.)

(Disc)

Page 25

. 1029

102C
102F
1032
1034
1037
103A
103D
1040
1041
1043
1045
1048
104A

. 104D
. 104E
. 1050

1052
1054
1056
1058

. 105B

105D

. 105F
. 1062

1065
1067
1069

. 106B

106D
106F
1071

. 1072
. 1074
. 1076

1078
107A
107C

. 107E

1080
1082
1084

9D
9D
9D
A9
gD
9D
90
gD
CA
00
A9
8D
A9
8D
ES
86
R9
85
R9
85
20
co
DO
20
20
DO
E6
A5
29
85
A5
18
65
C9
DO
R9
00
Co
90
R9
85
A5

00
00
00
52
00
00
00
00

El
30
15
77
16

D2
50
Dé
64
D5
E4
20
03
CE
R9
08
D2
D2
03
D2
DO

D6
FF
04
SF
06
AO
02
00
D6
D1

09
CA
0B

ac
oy

OE
OF

FF

FF

FF

10
10

STA $0900, X
STA $0AGO, X
STA $0B0O, X

LDA #$52

STA $0C00, X
STA $0D0O, X
STA $0E0O, X
STA $0FO0O, X

DEX

BNE $1024
LDA #%$30
STA $FF15
LDA #$77
STA $FFl6
INX

STX $D2
LDA #$50
STA $D6
LDA #$64
STA $D5
JSR $FFE4
CMP #$20
BNE $1062
JSR $10CE
JSR $10A9
BNE $106F
INC $D2
LDA $D2
AND #$03
STA $D2
LDA $DO
CLC

ADC $Dé6
CMP #$FF
BNE $107C
LDA #$9F
BNE $1082
CMP #$A0
BCC $1082
LDA #$00
STA $D6
LDA $D1

Page 26

. 10D0 85 D7 STA $D7
1002 A9 20 LDA #$20
10D4 85 D8 STA $D8
10D6 A2 20 LDX #$20
1008 A0 0O LDY #$00

10DA 98 TYA
. 10DB 91 D7 STA ($D7),Y
100D 88 DEY

10DE DO FB BNE $10DB
10EC E6 D8 INC $D8

10E2 CA DEX
10E3 DO F6 BNE $10DB
10E5 60 RTS

10E6 A5 D5 LDA $D5
10E8 29 07 AND #$07
10EA A8 TAY

10EB A5 D5 LDA $D5
10ED 29 F8 AND #$F8
10EF 85 D7 STA $D7
10F1 A9 0O LDA #3$00
10F3 85 D4 STA $D4
10F5 06 D7 ASL $D7

10F7 2A ROL
10F8 06 D7 ASL $D7
10FA 2A ROL
10FB 06 D7 ASL $D7
10FD 2A ROL

10FE 85 D8 STA $D8
. 1100 85D3 STA $03
1102 A5 D7 LDA $07

1104 OA ASL
1105 26 D3 ROL $D3
1107 OA ASL.

1108 26 D3 ROL $D3

110A 65 D7 ADC $D7

110C 85 D7 STA $D7

. 110E A5 D8 LDA $D8

. 1110 65 D3 ADC $D3

1112 85 D8 STA $08

1114 A5 D6 LDA $D6

1116 29 FC AND #$FC
1118 OA ASL

Page 28

. 1119 26 D4 ROL $D4

. 111B 65 D7 ADC $D7

. 111D 85 D7 STA $D7

. 111F A9 20 LDA #$20

. 1121 65 D8 ADC $D8

. 1123 65 D4 ADC $D4

. 1125 85 D8 STA $D8

. 1127 A5 D6 LDA $D6

. 1129 29 03 AND #$03

. 112B AA TAX

. 112C B1 D7 LDA ($D7),Y
. 1126 2D 42 11 AND $1142,X
. 1131 85 D3 STA $D3

. 1133 BD 42 11 LDA $1142,X
. 1136 49 FF EOR #$FF

. 1138 A6 D2 LDX $D2

. 1138 3D 46 11 AND $1146,X
. 112D 05 D3 ORA $D3

. 113F 91 D7 STA ($D7),Y
. 1141 &0 RTS

>1142 2F CF F3 FC 00 55 AA FF :r?03<.u*?

Page 29

2.6 EXTENDED COLOUR-GRAPHICS

In this unfortunately little known mode, you can use one of the four
background colours for each character on the screen. It is for
example possible to show a blue character with a yellow background on
a white screen. This choice of colours has of course also its price:
we can only use 64 different characters since the two top Bits of the
character have to be used for definition of the background colour.
The following chart should make this clear:

SCREEN CODE CHARACTER BACKGROUND+COLOUR REGISTER
e e e — e
0- 63 0 - 63 65301
64 - 127 0 - 63 65302
128 - 191 0 - 63 65303
192 - 255 0 - 63 65304

Program below will show you the practical a@plication of this mode:

100 SCNCLR

110 COLOR 0,1,2

120 COLOR 1,2,3

130 COLOR 2,4,5

140 COLOR 3,6,7

150 POKE 65286,PEEK(65286)0R64
160 FOR I=0 TO 63

170 : POKE 3072+I,1

180 : POKE 3136+I1,I+64
190 : POKE 3200+1,1I+128
200 : POKE 3264+1,1+192
210 NEXT 1

220 1=0

Page 30

230 FOR C=0 1O 15
240 : FOR L=0 TO 7

-

250
260 :
270 :

POKE 2048+I,L*16+C
POKE 2176+1,L*16+C

I=I+1

280 : NEXT L

290 NEXT C |

300 CHAR 1,14,12,"PLEASE KEY" : GETKEY K$
65286 ,PEEK (65286)AND191

310 COLOR 0,2,7

EXPLANATION LINE BY LINE:

100

110-140

150

160

170

180

190

200

210

220

230-240

250-260

270

280-290

Erase screen

Choose background colours
Switch-on Extended Colour Mode
For each possible character:

Create one set with background colour 1

" n u] " ~ n 2
" " " " " " 3

" n n n " " 4

Next character

Put variant 1 to O

For each colour and brightness:

Write colour and brightness into colour memory
Increment pointer

Next brightness and colour

Page 31

POKE

300 Print text, wait for key, normal mode.

310 Switch-on normal background colour (white).

Page 32

2.7 SOFT SCROLLING

When the last line of the C-16's screen is filled with text, the
whole picture is automatically scrolled one line up. That means the
top line is removed and all other lines move towards the top by one
position. This scrolling happens normally line by line but there are
other situations where it would be desirable for this scrolling to be
soft, i.e. only by one pixel.

The TED-Graphic Chip offers even this possibility and at least the
vertical scrolling is programmable in BASIC. Firstly the no. of
screen lines has to be reduced to 24 (Bit 3 of register 65286). The
bottom 3 Bits of the same register define the scroll-position from O
to 7. As soon as this value has reached 7, a completely new line
becomes visible. We then have to set this value to O again and get
the next line. The following BASIC~Program demonstrates this effect:

100 SCNCLR

110 FOR I=0 TO 24

120 : GOSUB 240

130 NEXT I

140 SR=65286

150 FOR T=1 TO 20 : NEXT T

160 POKE SR, (PEEK({SR)AND240)0R 7

170 GOSUB 240

180 FOR I=6 TO O STEP -1

190 ¢ FOR T=1 TO 60 : NEXT T

200 : POKE SR, (PEEK(SR)AND240)0R I

210 NEXT I

220 GET K$: IF K$="" THEN 150

230 POKE SR, (PEEK(SR)AND240)0R 11 : END
240 PRINT CHR$(13)"PRESS ANY KEY"; : RETURN

Page 33

LINE BY LINE EXPLANATION:

100

Erase screen

110-130 Print text on screen

140
150
160
l?O
180
190
200
210
220
230

240

Put SR on address of Scroll-Register (vertical)
Time lqop

Put on 24 lines and Scroll-vValue on 7

Print message on presently invisible line 25
Decrement Scroll-vValue

Time loop

Put Scroll-Value

Next value

Check key

Put on 25 lines again and normal Scroll-Value (3)

Subroutine, to print message

In the next chapter you will find another example of horizontal
scrolling (in machine code), which together with the Raster Interrupt
is responsible for good effects.

Page 34

2.8 THE RASTER~-INTERRUPT

The C-16 has the possibility to interrupt the processor dependant on
the screen beam (raster) which creates the TV-picture. This can be
used to write data on the screen while the raster beam is not on the
screen, thus avoiding a flicker. Furthermore it is possible to
subdivide the screen into different working areas. This is also used
by the C-16 s BASIC in order to utilise the divided screen in graphic
modes 2 and 4.

In order to create a Raster Interrupt you have to put Bit 1 of the
Interrupt Enable Register ($FFOA) to 1. The lower 8 Bits of the line
in which an interrupt is to be created has to be written into
register $FFOB and the 9th Bit in Bit O of register $FFOA. As soon as
the raster beam arrives at the selected line a raster interrupt is
genrated and Bit 1 of the Raster Interrupt Status Register ($FF09)
set to 1. To facilitate things you best 1look at the next example
which creates a black band on the screen background.

>1000 00 OC 10 00 00 9E 34 31 iTueuee..d4l
>1008 31 32 00 00 00 00 00 00 :rl2......
>1010 78 A9 29 80 14 03 A9 10 :r8))...).
>1018 8D 15 03 A9 02 8D OA FF iTeee)ees?
>1020 AS 30 8D OB FF 58 4C 26 :r)0..7xl&
>1028 10 AD 09 FF 8D 09 FF AD :T.-.?..7-
>1030 0B FF C9 50 90 0B A9 30 :r.?ip..)0
>1038 8D OB FF EE 15 FF 4C 49 :r..?..71i
>1040 10 A9 50 8D OB FF CE 15 :r.)p..7n.
>1048 FF 68 A8 68 AA 68 40 AA :T2(((*(&*

SAVE prog. on Cass. or Disc
S"RASTER-DEMO", 01,1001, 104F (Cass.)

SYRASTER-DEMO™,08,1001,104F (Disc)

Page 35

. 1010 78 SEI

. 1011 A9 29 LDA #$29
. 1013 8D 14 03 STA $0314
. 1016 A9 10 LDA #$10
. 1018 8D 15 03 STA $0315
. 101B A9 02 LDA #$02
. 101D 8D OA FF STA $FFOA
. 1020 A9 30 LDA #$30
. 1022 8D OB FF STA $FFOB
. 1025 58 CLI

. 1026 4C 26 10 IMP $1026
. 1025 AD 09 FF LDA $FFO9
. 102C 8D 09 FF STA $FF09
. 102F AD OB FF LDA $FFOB
. 1032 C9 50 CMP #3$50
. 1034 S0 0B BCC $1041
. 1036 A9 30 LDA #$30
. 1038 8D 0B FF STA $FFOB
. 103B EE 15 FF INC $F15
. 103E 4C 49 10 IMP $1049
. 1041 A9 50 LDA #$50
. 1043 8D 0B FF STA $FFOB
. 1046 CE 15 FF DEC $F15

. 1049 68 PLA
. 104A a8 TAY
. 104B 68 PLA
. 104C AA TAX
. 104D 68 PLA
. 104E 40 RTI

Finally we would like to show you a program which shows the graphic
possibilities of TED with Soft Scrolling and Raster Interrupt quite
impressively. The combination of these two functions is used in many
commercial games, e.g. to see a moving landscape. In our example we
will put 3 texts onto the screen of which the middle one can be moved
gently across the screen with the joystick - in both directions with
variable speed. When you have analysed and understood this example,
it shouldn't be too difficult anymore for you to write excellent
graphic effects and programs of your own.

Page 36

>1000
>1008
>1010
>1018
>1020
>1028
>1030
>1038
>1040
>1048
>1050
>1058
>1060
>1068
>1070
>1078
>1080
>1088
>1090
>1098
>10A0
>10A8
>1080
>1088
>10C0
>10C8
>1000
>1008
>10E0
>10E8
>10F0
>10F8
>1100
>1108
>1110
>1118
>1120
>1128
>1130
>1138

00
31
RS

5888

B9

7A
B9
99
D7
20

BO
18
09
A9
15
00
0B
60
0B
07
60
D4
90
A5
D3
D2
D3
Bl
CA
26
85
E6
E6
Bl
DO

0B 10
32 00

9D 00
OE 9D
08 9D
00 0B

B9 B2

D8 11
C2 09
86 DO
Bl 10
08 FF
01 CA
65 DO
FO DD
73 8D
03 A9
85 DA
FF A9
A5 DB
RS> D9
85> D9
A2 05
A9 09
85 D1
Dl 18
85 D5
E6 D4
E6 D7
D7 91
00 D3

D3 85
D2 E6
D3 E6
D5 91
D5 86

00
00
15
oc
00
00
CA
99
1l
C5
99
99
86
A9
A2
4A
C9
85
14
02
85
00
FO
18
98
A9
85
98
69
85
E6
Cc8
D5
84
18
D5
B4
D7
D7
DA

00
00
FF
9D

09
DO
82
99
11
62
62
DB
FD
00
BO
F7
DO
03
8D
D9
8D
FC
65
29
oD
Dé
10
28
D7
Dé
Bl
Co
DA
69
85
E6
Bl
88
A2

El
oc
D2
99
OE
OA
20
8D
4A
0l
FO
DO
A9
OA
RS
07
RS
DO
08
85
85
31
8>
90
E6
D3
27
FO
28
D7
D6
Dl
10
05

34
0o

aD

00
AO
99
oc
c2
AS
88
8F
08
4A
E8
El
D9
11
FF
5A
FF
00
A8
DO
D2
D8
AO
D1
o8
D8
91
DO
20
85
90
E6
91
F5
A

31
00
A9
9D
9D
OA
12
2A
99
oD
26
10
10
FF
4h
8A
C9
78
8D
A9
8D
58
85
29
01
85
A9
FF
85
E6
E6
D1
F3

01
08
b8
B3
CA
DA

teeeesadltl
T12.0000e
tT)0..2".)
T ceevees
tTeveee)ee
tTeencones
Teoo P! .
H > S
iTe92.4T4s
:T:.9E..B.
$T9%. ")&
tTBee"eus
srw.P.[..
T lo)=ud?
r-.2?".JJ3J
:r0.J3J0. (.
T %PI7011
:r.0].PPY8
T)300e)es
tTee)eee?)
ir..z.Y)z.
$Te?)eee?X
.t %[0<)..
r[%Y.%P()
:r..Y.).P.
T ",)..T.
iTt)eovex)
Tee(ual ?
:1%q.) (..
TS .UeWe ok
srr&t&vax&
srs&whls.q
:Tlw.u8'P3
srJPs.z0-
1T&%g.) (.Q
STeSeUaWes
& &t&v&x
:r&sé&wlg.s
tTlu.w. 5
irPu.z". $z

Page 37

>1140
>1148
>1150
>1158
>1160
>1168
>1170
>1178
>1180
>1188
>1190
>1198
>11A0
>11A8
>118B0

. 1010
. 1012
. 1015
. 1017
. 1019
. 101C
. 101F
. 1022
. 1025
. 1027
. 102A
. 102D
. 1030
. 1033
. 1034
. 1036
. 1038
. 1028
. 103E

A9
A9
18
04
A8
DA
DO
FF
FO
DO
07
FF
04
05
20
>11B8 09
>11C0 05
>11C8 13
>1100 04
>1108 0D
>11E0 OD 20
>11E8 03 0B

0D
90
69
E6
Bl
9l
bC
RE
08
02
EC
68
09
09
20
02
OE
03
01
09

85
85
28
D2
D1
05
60
0B
05
A2
1D
A8
05
0cC
20
14
20
08
13

D2
D1
85
E6
85
AS
AD
FF
D9
5A
FF
68
13
20
20
20
20
09
20

A9
85
D1 85
D6 98
DC Bl
DC 91
09 FF
A9 40
A2 83
8E 0B
FO FB
AA 68 40
05 12 20
08 09 05
20 02 OC
13 14 05
20 16 05
05 02 05
08 09 05
14 20 05 09 OE 05
OA OF 19 13 14 09
21 AA AA AA AA AA

09
D5

8>
A5

Dé6
D1
90
27
R4
CA
09
83
DB
29
07
20
14
12
05
08
12
20
12

D5

A9 CF LDA #$CF

8D 15 FF STA $FF15
A2 00 LDX #$00

A9 20 LDA #$20

9D 00 OC STA $0C00,X
9D 00 0D STA $0DOC,X
9D 00 OE STA $OEQO,X
9D 00 OF STA $OFOO,X
A9 00 LDA #$00

9D 00 08 STA $0800,X
90 00 09 STA $0900,X
90 00 OA STA $DADO,X
90 00 OB STA $0B0O,X
CA DEX

DO El BNE $1017
A0 12 LDY #8$12

B9 9F 11 LDA $115F,Y
99 82 OC STA $0C82,Y
99 2A OF STA $OF2A,Y

tT)eeT)eV
:T)..q.uk%q
:r.)(.g.u.
sT&r&v. I
:r(1g.£1u$
rz.u%f.qd
:TPE =-.7?..
ir?..7)e .
:r0..Y",.[
TP "z..7)
T.,.720%..
:r2(((*(e
tRececes &
tReee cons
R o
tReee vees
‘Ree

:R.......

:RQ'. L A

:R... LI)

:R.

e e0 00

Page 38

1041
1044
1047
104A
104D
1050
1053
1056
1058
1058
105E
105F
1061
1063
1065
1068
1068
106D
1070
1073
1075
1076
1077
1078
107A
1078
107C
107
107F
1080
1081
1083
1085
1087

. 1089

1088
108D
108F
1090
1092
1095
1097

B9
99
99
B9
99
B9
99
A9
99
99
88
10
86
86
20
20
R9
8D
AD
A2
4A
4A
4A
BO
CA
4A
BO
E8
8A
18
65
c9
FO
co
FO
85
DO
78
A9
8D
AS
8D

B2
D2
7A
C5
c2
D8
62
26
c2
62

D7
DO
DB
8F
Bl
FD
08
08
ao

01

01

00
F7
El
03
DD
0O
D9

73
14
11

11
oC
OF
11
0D
11
OE

09
0A

10
10

FF
FF

03

LDA $11B2,Y
STA $0CD2,Y
STA $OF7A,Y
LDA $11C5,Y
STA $0DC2,Y
LDA $11D8,Y
STA $0E62,Y

LDA #$26

STA $09C2,Y
STA $0A62,Y

DEY

BPL $1038
STX $DO
STX $DB
JSR $108F
JSR $10B1
LDA #$FD
STA $FFO8
LDA $FFO8
LDX #$00
LSR

LSR

LSR

BCS $107B
DEX

LSR

BCS $107F
INX

TXA

cLC

ADC $DO
CMP #$F7
BEQ $1068
CMP #$09
BEQ $1068
STA $DO
BNE $1068
SEI

LDA #$73
STA $0314
LDA #$11

15 03 STA $0315

Page 39

109A
109C
10SF
10A1

. 10A3

10A5

. 10A7

10AA

. 10AC

10AF

. 1080
. 10B1
. 1083
. 1085
. 1087

1089
1088
108C

. 10BE

108F
10C1
10C3
10C4
10C6
10C8
10C9
1ocB
10CD
10CF
1001
10D3
1005
10D7
1009
100B
10DC
10DE
100
10E2
10E3
10E5
10E7

RS
8D
RS
85
85
AS
8D
R9
8D
58
60
A5
FO
A9
85
A5
18
65
A8
29
85
98
29
DO
60
A2
A9
85
85
R9
85
85
Ag

85

98
10
AO
AR5
18
69
85
85

02
CA
0o
DA
D9
5R
0B
0o
07

DB
FC
00
DB
DS

D0

07
D9

08
0l

05
0D
D2
D4
09
D6
D8
90
D1

31
FF
D1

28
D1
D3

FF

FF

FF

LDA #$02
STA $FFOA
LDA #$00
STA $DA
STA $D9
LDA #$5A
STA $FFOB
LDA #$00
STA $FFOQ7
CLI

RTS

LDA $DB
BEQ $10Bl
LDA #$00
STA $DB
LDA $D9
CLC

ADC $DO
TAY

AND #$07
STA $D9
TYA

AND #$08
BNE $10C9
RTS

LDX #$05
LDA #$0D
STA $02
STA $D4
LDA #$09
STA $D6
STA $D8
LDA #$90
STA $D1
TYA

BPL $110F
LDY #$FF
LDA $D1
CLC

ADC #%$28
STA $D1
STA $D3

Page 40

10E9
10EB
10ED
10EF
10F1

. 10F3

10F5
10F7
10F9
10FB
10FC
10FE
1100
1102
1104
1106
1108
1109
1108
110D
110F
1111
1113
1114
1116
1118
111A
111C
111E
1120
1122
1124
1126
1128

. 112A

112C
112€
1130

. 1132

1134
1135
1137

85
85

D5
D7

S0 08

E6
E6
E6
E6
E6
E6
C8
Bl
91
Bl
91
CO
DO
CA
D0
84
FO
RO
A5
18
69
85
85
85
85
90
E6
E6
E6
E6
E6
Eé6
Bl
91
Bl
91
88
10
CA

D2

D6
D8
D3
D7

D3
D1
D7
D5
27
F3

D3
DA
2D
26
D1

28
D1
D3
D5
D7
08
D2
D4
D6
D8
D3
D7
D1
D3
D5
D7

F5

STA $D5
STA $D7
BCC $10F7
INC $D2

INC $D4

INC $D6

INC $D8

INC $D3

INC $D7

INY

LDA ($D3),Y
STA ($D1),Y
LDA ($D7),Y
STA ($D5),Y
CPY #$27
BNE $10FB
DEX

BNE $10DE
STY $DA
BEQ $113C
LDY #$26
LDA $D1

CLC

ADC #$28
STA $D1

STA $D3

STA $D5

STA $D7

BCC $1128
INC $D2

INC $D4

INC $D6

INC $D8

INC $D3

INC $D7

LDA ($D1),Y
STA ($D3),Y
LDA ($D5),Y
STA ($D7),Y
DEY

BPL $112C
DEX

Page 41

. 1138

113A
113C
113E
1140
1142
1144
1146
1148
114A
114C
114E
1150
1151
1153
1155
1157
1159
115B
115D
115E
1160
1161
1163
1165
1167
1169
116B
116D
116F
1170
1172
1173
1176
1179
117C
117
1180
1182
1184
1186
1188

DO
86
A2
A4
A9
85
A9
85
A9
85
85
A5
18
69
85
85
S0
E6
E6
98
49
A8
Bl
85
Bl
A4
91
A5
91
CA
DO
60
AD
8D
AE
A9
EO
FO
05
A2
86
D0

D5
DA
05
DA
oD
D2
09
D6
90
Dl
D5
D1

28
Dl
D5
04
D2
Dé

27

D1
DC
D5
DA
D5
DC
D1

DC

09
09
0B
40
83
08
D9
83
DB
02

FF
FF
FF

BNE $110F
STX $DA
LDX #$05
LDY $DA
LDA #3$0D
STA $D2
LDA #$09
STA $Dé6
LDA #$90
STA $D1
STA $D5
LDA $D1
CLC

ADC #$28
STA $D1
STA $D5
BCC $115D
INC $D2
INC $D6
TYA

EOR #$27

TAY

LDA ($D1),Y
STA $DC

LDA ($D5),Y
LDY $DA
STA ($D5),Y
LDA $DC
STA ($D1),Y
DEX

BNE $114E
RTS

LDA $FFO9
STA $FF09
LDX $FFOB
LDA #$40
CPX #$83
BEQ $118A
ORA $D9
LDX #$83
STX $DB
BNE $118C

Page 42

. 118A
. 118C
. 118F
. 1191
. 1194
. 1196
. 1199
. 119A
. 1198
. 119C
. 1190
. 119E

>119F
>11A7
>11AF
>11B7
>11BF
>11C7
>11CF
>11D7
>11DF
>11E7

A2 5A
8E
29
EC
FO
8D
68
A8
68
AA
68
40

20
14

12

05
08
12
20
12
05

G4
05
20
09
05
13
04
oD
oD

0B FF
Q7
1D FF
FB
07 FF

PLA
TRY
PLA
TAX
PLA
RTI

09 05
09 OC
20 20
02 14
CE 20
03 08
01 13
09 14
20 OA

09 03 0B 21

13
20
20
20
20
09
20
20
OF

05

08
20
13
20
05
08
05
19

LDX #$5A
STX $FFOB
AND #$07
CPX $FF1D
BEQ $1191
STA $FFO7

12 20 :
09 05 :
02 OC :

14 05
16 05
02 05
09 05
09 OE
13 14

AA AA AA AA

:RO.. L)
:R....Ill. -
:R L N L O]

:R.'.O eo e

:R.. L

:Rl L !****

Page 43

2.9 TECHNICAL DETAILS OF TED-CHIP

\

In all different modes the TED-Chip
characters. Each character on the screen
colours in 8 different brightness levels.
can be shown flashing.

The values in the Video-RAM determine whic
in a certain place. To this belongs a
supplies colour, brightness and flashing.

The TED-Chip receives this information
Colour~RAM. The Video-RAM consists of 1000
consist of an 8 Bit pointer (see also chap
Register in the TED-Chip determines where
the memory plan of the C-16. The registers
in the memory plan of the C-16 from $FFQO
Matrix Register is the TED register
15:65280+20=65300 (hex: $FFO0+$14 = $4FF14
position of the Video-RAM in the C-16's me
this register. The TED-Register 20 looks a

Bit:

Function: VM4 VM3 VM2 VM1 VMO N

NU means "Not Used" and can be ignore
position of the Video-RAM in the memory, s

Page 44

displays 25 lines of 40
can accept 16 different
Furthermore the characters

h character is to be shown
certain attribute which

from the Video-RAM or

memory places which each
ter 2.1). The Video Matrix
the Video-RAM is located in
of the TED-Chip are found
(decimal: 65280). The Video
20, the complete address
). If we want to change the
mory we have to manipulate
s follows:

NU NU

d, VM4-VMl determine the
ee the following table:

VM4=YM1 Video-RAM VM4=VML
00000 $0400 10000
00001 $0C00 (standard) 10001
00010 $1400 10010
00011 $1C00 10011
00100 $2400 10100
00101 $2C00 10101
00110 $3400 10110
00111 $3C00 10111
01000 $4400 11000
01001 $4C00 11001
01010 $5400 11010
01011 $5C00 11011
01100 $6400 11100
01101 $6C00 11101

- 01110 $7400 11110
01111 $7C00 11111

If you possess a C-16 without memory expan
put your Video-RAM in 8 different position
make sure that the Colour-RAM is always in
the Video-RAM. If you (as after switching-
$0C00, the Colour-RAM will be at $08GO0.

Each memory place in the Video-Matrix is u
character definition of the corresponding
(MSB) of this pointer can be interpreted i
the RVS-Bit (Bit 7) of TED-Register 7 ($FF
Video-Matrix (VM7) is used to decide wheth
reverse or normal. If VM7 is 0, it is norm
reverse, whereby the TED-Chip will create

the hardware . Thus 128 characters can

RVS-Bit of the TED-Chip is 1, 256 own char

Page 45

Video-RAM

$8400
$8C00
$9400
$9c00
$A400
$ACO0
$B400
$BCOO
$c400
$ccoo
$0400
$DCO0
$E400
$ECO0
$F400
$FCO0

sion you can in principle
s ($0400...%$3C00). Please
stalled exactly 1K below
on) have the Video-RAM at

sed as a pointer for the
character. The 8th Bit
n 2 different ways. When
D7) is 0, the MSB of the
er the character should be
al, if it is 1, it is
the reverse character by
be user defined. If the
acters can be defined.

VIDEQ MATRIX ADDRESS

Al5 Al4 Al3 Al2 All A10 A9 A8 A7 A6 A5 A4 A3 A2 Al AC

o > - A e —— ————
O e S T e W D S S G S S W Gy S S s e W B S W S (e Y = V- W o - - = s P = A . A0 G W -

VM4 VM3 VM2 VM1 VMO 1 VC9 VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 VEo

The Attribute-Memory also consists of 1000 consecutive memory places
and contains the Flash-Bit (Bit 7), the brightness (Bit 4-6) and the
colour (Bit 0-3). The position of the Attribute- or Colour-RAM is
also determined by the Video-Matrix-Register. But since Al0 always
equals 0, the Attribute-RAM is always 1K below the Video-RAM.

ATTRIBUTE ADDRESS

ARl5 Al4 Al3 Al2 All A0 A9 A8 A7 A6 A5 |A4 A3 A2 Al RO

O G s G e T W e G G e e W T R I G T G S G S o e - G S S G s G - G G W G W G Y) W T S G S G S G T G S —— -

W4 VM3 VM2 VM1 VMO O VC9 VC8 VC7 VC6 VC5 VC4 VC3 V€2 VC1 VCO

Each character consists of a matrix of 8x8 pixels which are stored in
ROM as 8 consecutive Bytes. The address of this character memory is
determined by CB4-CBO of the TED-Register 19 ($FF13). These Bits are
the higher value Bits of the Character-Set-Address.

Al5 Al4 Al3 Al2 All ALO A9 A8 A7 A6 A5 A4 A3 A2 Al AO

—— T T G W I T W IS e e G i G e e W T TR R S e S SO e G e W S T G S S VER TR SR G S e M G S [e S S S e W W G i W S 0 Gy e e A

CB5 CB4 CB3 CB2 CB1 VM7 VM6 VM5 VM4 VM3 VM2 WML VMO

CBO (if RVS-Bit is 1)

Page 46

3.1 MUSIC WITH THE BASIC-COMMANDS

The Commodore C-16 has simple but good facilities of sound creation.
It has two independent sound channels which can be very easily
programmed with the corrosponding BASIC commands VOL (volume) and
SOUND (voice, frequency, duration). We don't want to go into too much
detail about these BASIC commands (for this you have the manual), but
would like to show you with a small example how to programme small
music pieces for two voices in BASIC.

100 VOL 8

110 DIM N1%(66),N2%(66),D1%(66),D2%(66)
120 I=0

130 READ N1%(I),D1%(I): IF N1%(I)<O THEN 150
140 I=I+1:GOTO 130
150 T1=I :I=0

160 READ N2%(1),D2%(I): IFN2%(I) <O THEN 180
170 I=I+1 : GOTO 160

180 Il=-1 :I2=-1

190 IF D1 > O THEN 220:ELSE SOUND 1,N1,0
200 I1=I1+1: IF Il < T1 THEN D1=D1%(I1):N1=N1%(Il):ELSE 270
210 IF N1>0 THEN SOUND 1,N1,300

220 IF D2>0 THEN 250:ELSE SOUND 2,N2,0
230 12=12+1 : D2=D2%(I2) : N2=N2%(I2)
240 IF N2>0 THEN SOUND 2,N2,300

250 D1=D1-1:D2=D2-1

260 FOR I=1 TO 80: NEXT I : GOTO 190
270 VOL O

280 DATA 0,1,685,1,770,1,810,1

290 DATA 798,1,685,1,798,1,834,1

300 DATA 810,2,854,2,755,2,854,2

310 DATA 770,1,685,1,770,1,810,1

320 DATA 798,1,685,1,798,1,834,1

330 DATA 810,2,770,2,0,4

340 DATA 0,1,854,1,810,1,854,1

350 DATA 770,1,810,1,685,1,739,1

360 DATA 704,2,770,2,834,2,864,2

370 DATA 864,1,834,1,798,1,834,1

380 DATA 739,1,798,1,643,1,704,1

Page 47

390 DATA 685,2,739,2,810,2,254,2
400 DATA 854,1,810,1,770,1,810,1
410 DATA 704,2,834,2,834,1,798,1
420 DATA 739,1,798,1,685,2,810,2
430 DATA 810,1,770,1,704,1,770,1
440 DATA 643,2,798,2,810,6

450 DATA -1,-1

460 DATA 7,2,516,4,485,2

470 DATA 516,1,345,1,516,1,596,1
480 DATA 571,1,345,1,571,1,643,1
490 DATA 596,2,516,2,485,2,345,2
500 DATA 516,1,345,1,516,1,596,1
510 DATA 571,1,345,1,571,1,643,1
520 DATA 596,2,516,2,596,2,516,2
530 DATA 643,1,516,1,383,1,516,1
540 DATA 262,1,383,,1,7,1,169,1
550 DATA 118,2,262,2,453,2,571,2
560 DATA 571,1,453,1,345,1,453,1
570 DATA 169,1,345,1,118,1,118,1
580 DATA 7,2,169,2,262,2,383,1
590 DATA 118,1,262,1,118,2,118,2
600 DATA 169,1,345,1,7,1,169,1
610 DATA 7,2,7,2

620 DATA 118,1,453,1,383,1,453,1
630 DATA 596,6

640 DATA -1,-1

EXPLANATION LINE BY LINE

100 Volume on max.

110 Dimension data fields

120 I counts the number of notes

130 Key note and duration for first voice in; a negative

figure means: Ready!

140 Increment counter I and continue.

Page 48

150

160

170

180

190

200

210

220

230

240

250

260

270

280-440

450

460-630

640

Tl is the total number of notes for voice 1. Put I

back to O.

Key in note and duration for voice 2 ; a negative

figure means: Ready!

Increment counter I and continue.

I1 and I2 are pointers for the data fields.

When voice 1 is ready, go to 220; otherwise stop voice 1.

Increment pointer of voice 1. Whe
otherwise put note and duration.

If no pause, start note.

When voice 2 is ready go to 250;
2.

Increment pointer of voice 2 and
ration.

If it is no pause start note.
Decrement duration.

Wait a short while. In this line
notes shorter or longer.

Switch volume off.

Data for voice 1.

End of data for voice l.
Data for voice 2.

End of data for voice 2.

Page 49

n ready, leave loop;

otherwise stop voice

put note and du-

you can play all

3.2 THE SOUND REGISTERS OF TED

The Sound Registers are on the same chip as the Graphic Registers in
TED. Because of the simple sound possibilities, only 5 registers are
required which have the following functions:

ADDRESS

$FFOE

$FFOF

$FF10

$FF1L

¥F12

BITS

0-1

FUNCTION

Low Byte of voice 1 flrequency

" " n n 2 L1
Top 2 Bits of voice 1 frequency

Volume
Select voice 1 (0O=off,l=on)
fl " 2 n " " n

" noise for voice 2 (O=off,l=o0n)

Sound switch (0=on,lzoff)

Top 2 Bits of voice 2 frequency

In order to create a sound, choose first the voice or voices and the
volume with register $F1ll. Normally you set Bit 7 of this register
to 1 for no sound. Next you choose the frequencies which you should
note that Bits 2-7 of register $FF12 are used for other purposes and
must not be changed. Now you can switch on the sound with Bit 7 of
$F1ll and or switch it off.

Page 50

3.3

INTERRUPT PROGRAMMED MUSIC

In this chapter we would like to investigate the possibility of

creating music on the C-16 which does not

interfere with the rest.

This kind of background music is often found in games and it is very

practical to concentrate on the game and
avtomatic background music can be created

not on the music. This
very easily on the C-16. As

you perhaps know there is a so-called Interrupt every 1/60 th of a
second in the C-16. This is a short interpupt of the normal program
during which the C-16 does routine tasks like checking if any key has
been pressed. We can use this interrupt sg that C-16 besides doing
other tasks also actuates the relevant sound parameters. To
facilitate things, it is best you key in the following program and
see for yourself. There will be a more detailed explanation of this

program in the next pages.

100
110
120
130
140
150
160
170

180 :

190
200
210
220
220
240

250 :

260
270
280
290
300
310
315

FOR I=1536 TO 1536+173

: READ A

: POKE I,A

¢ C=C+A

NEXT I

IF C<>23952 THEN PRINT "ERROR":STOP
FOR I=1712 TO 1712+119 STEP 3

¢ READ A,B

¢ POKE I+2,INT(B/256)

¢ D=D+A+B

NEXT I

IF D<>34808 THEN PRINT "ERROR":STOP
POKE 208,176 : POKE 209,6

VOL 7 : SYS 1536

DATA 120,169,36,141,20,3,169,6,141,21

POKE I,A : POKE I+1,B-(INT(B/256)%*256)

3,169,255,141,252,4

DATA 141,254 ,4,88,96,120,169,14,141,20,3,169,206,141,21,3

DATA 88,96,255,0,173,252,4,201,255,240,3,76,14,206,160,0

DATA 162,0,177,208,149,210,200,232,138,201,3,208,245,165,208,105
DATA 2,133,208,144,2,230,209,165,210,201,255,208,6,32,21,6

DATA 24,144,216,201,254,208,19,165,208

DATA 133,213,165,211,133,208,165

Page 51

320 DATA 209,133,214,165,212,133,209,24,144

325 DATA 196,201,253,208,11,165,213

330 DATA 133,208,165,214,133,209,24,144,181,201,252,208,13,173,17,255
340 DATA 41,240,5,211,141,17,255,24,144,164,73,255,141,252,4,169

350 DATA 255,141,254,4,173,18,255,41,252,5,212,141,18,255,165,211

360 DATA 141,14,255,173,17,255,9,16,141,17,255,24,144,162

370
380 DATA 254,1727,254,1796,254,1796,254,1727,254,1712

390 DATA 20,685,20,739,40,739,20,685,20,643,40,596,20,643,20,685
400 DATA 20,739,20,685,80,643,20,685,20,739,40,739

410 DATA 20,685,20,643,40,596,20,643,20,685,20,643

420 DATA 20,596,80,596,253,0
430 DATA 20,770,20,810,40,810,20,796,20,739,40,770
440 DATA 20,770,20,810,20,798,20,739,80,770,253,0

MACHINE CODE PROGRAM

. 0600 78 SEI

. 0601 A9 24 LDA #$24
. 0603 8D 14 03 STA $0314
. 0606 A9 06 LDA #$06
. 0608 8D 15 03 STA $0315
. 060B A9 FF LDA #$FF

. 060D 8D FC 04 STA $04FC
. 0610 8D FE 04 STA $04FE
. 0613 58 CLI
. 0614 €0 RTS
. 0615 78 SEI

. 0616 A9 OE LDA #$0E
. 0618 8D 14 03 STA $0314
. 061B A9 CE LDA #$CE
. 061D 8D 15 03 STA $0315

. 0620 58 CLI
. 0621 60 RTS
. 0622 EA NOP
. 0623 EA NOP

. 0624 AD FC 04 LDA $04FC
. 0627 C9 FF CMP #$FF
. 0629 FO 03 BEQ $062E
. 0628 4C OE CE JIMP $CECE
. 062E AO OC LDY #$00

Page 52

0630
0632
0634
0636
0637
0638
0639

. 063B

063D
063F
0641
0643
0645
0647
0649
0648
064D
0650
0651
0653

. 0655
. 0657 A5
. 0659

A2
Bl
95
C8
E8
8A

S&88

85
90
E6

c9

20
18
o0
C9
DO

0658 A5

065D

. 065F

0661
0663
0665
0667
0668
066A

. 066C

066E
0670
0672
0674
0676
0677
0679
0678
067D

00
DO
D2

03
Fs
DO
02
DO
02
D1
D2
FF
06
15

D8
FE
13
DO
D5
D3
DO
Dl
D6
D4
D1

C4 .

FD
0B
D5
DO
D6
D1

B5
FC
oD

LDX #$00

LDA ($D0),Y

STA $D2,X
INY

INX

TXA

CMP #$03
BNE $0632
LDA $DO
ADC #$02
STA $DO
BCC $0647
INC $D1
LDA $D2
CMP #$FF
BNE $0653
JSR $0615
CLC

BCC $062B
CMP #$FE
BNE $066A
LDA $DO
STA $D5
LDA $D3
STA $DO
LDA $D1
STA $D6
LDA $D4
STA $D1
CLC

BCC $062E
CMP #$FD
BNE $0679
LDA $D5
STA $DO
LDA $D6
STA 301
CLC

BCC $062E
CMP #$FC
BNE $068A

11 FF LDA $FF11

Page 53

. 0680 29 FO AND #$FO
. 0682 05 D3 ORA $D3

. 0684 8D 11 FF STA $FF1l
. 0687 18 CLC

. 0688 90 A4 BCC $062E
. 068A 49 FF EOR #$FF
. 068C 8D FC 04 STA $04FC
. 068F A9 FF LDA #$FF
. 0691 8D FE 04 STA $04FE
. 0694 AD 12 FF LDA $FF12
. 0697 29 FC AND #$FC
. 0699 05 D4 ORA $D4

. 069B 8D 12 FF STA $FF12
. 065E A5 D3 LDA $D3

. 06A0 8D OE FF STA $FFOE
. 06A3 AD 11 FF LDA $FF11
. 06A6 09 10 ORA #$10
. 06R8 8D 11 FF STA $FF1l
. 06AB 18 CLC

. 06AC 90 A2 BCC $0650

Our interrupt-player's syntax is relatively simple: The volume level
and length are stored. Additionally some Bytes have special

functions:

$FC (252) volume. The volume within a piece can be changed.
Low-Byte of the frequency contains the new volume 0O to 8.
High-Byte is not used.

$FD (253) This is a kind of GOSUB-command. It branches off to
address which is given instead of the frequency. Furthermore the
address is stored to allow a return of the sub~-program.

The
The

the
old

$FE (254) This is the RETURN-command which finishes a sub program.

The two frequency Bytes have to be there but are not used.

$FF (255) End of sequence.

Page 54

4.1 INTRODUCTION TO MACHINE CODE

If you want to really master your computer (who want's it toc be the
other way round), you cannot avoid programming in computer language
(MACHINE CODE). The nice thing is actually the tremendous speed and
unlimited control over the hardware possibilities of the computer.

What often frightens the BASIC-Programmer is the alleged complexity
of Machine Code and the fact that when you make a mistake, the
computer can crash. This, however, never causes lasting damage. Even
an absolute beginner can write small routines in machine code with
the integrated machine code monitor within a short period of time.
This introduction should, with a few examples help to inspire some
experimenting.

WHAT IS MACHINE CODE

The heart of C 16 is a Micro-Processor (7501) which can follow a
series of commands. These commands are similar to those of a
programmable calculator (TI, HP, etc.). The programmer has the
following at his disposal: a calculating register (accumulator), 2
Index~-Registers (X-Register and Y-Register) and the 16384 bytes of
memory in the C-~16. Many memory places of the C-16 have a certain
function which you have to know as a Machine Code Programmer.
Therefore the knowledge of a Memory Map is indispensable (see chapter
4,4), The memory places in the C-16 can only accept values between O
and 255 (try from BASIC: POKE 82,256 or similar). A no. in a memory
space can be a machine Code command which 1is wunderstood by the
processor and carried out, or some other data; this has to be decided
by the user. You don't have to remember which figure denotes which
machine code command, this is done by the integral Mini-Assembler in
the built-in Machine CODE Monitor of the C-16. You only have to
remember the so called Mnemonics, which are memory aids with 3
letters for the individual computer commands. From this the Assembler
generates the values between O and 255 and stores them in the memory.

Page 55

4.2 EXAMPLES OF THE MOST IMPORTANT COMMANDS

1. The commands LDA and STA, the first program

Let's assume the C-16's frame colour is to be changed to black.In
BASIC you could either use the COLOUR-Command or transfer the value
directly into the background register of the Video-Chip with a
POKE-Command. The BASIC-Line would be:

1 COLOR 4,1,0
oT:

1 POKE 65305,0

Let's now programme the last line in machine language instead of
BASIC. First you have to know where the machine program should run or
stored (e.g. called with: SYS 818). The Cassette-Buffer (at
$0332-03F2 or 818-1010) is suitable for our 1little demonstrations
because it is only used during a cassette operation.

If you want to poke O into memory space 65305 you have to obtain a O
first. For this you can use the command LDA which means load
accumulator. The value, in this case 0 with which the computer
register is to be loaded is put directly after the command in the
memory. In machine language this is shown by a # sign followed by the
required figure. To inform the Mini-Assembler that it is a
hexa-decimal number (it cannot use any others), you have to put a $
in front of every number and it has to be a two figure number. The
complete command now reads: LDA #$00.Now you have the value in the
accumulator and have to store it in memory location 65305 (hex.
$FF19). To do this, command STA can be used (STore Accumulator). The
required address has to follow, i.e. STA $FF19. Finally you have to
go back to BASIC with the command RTS (ReTurn Subroutine):RTS.

Page 56

In order to programme this small routine (and the following demos)
into the C-16, type the BASIC command: MONITOR. When you enter a

machine code proramme, you must always use CAPITAL letters only and
end each line with the RETURN key.

MONITOR (RETURN)
The screen will display.

MONITOR

PC SR AC XR YR SP

;3083 00 00 00 00 F9

Now Type

A 0332 LDA #$00 (RETURN)
A 0334 STA $FF19 (RETURN)
A 0337 RTS (RETURN)
A 0338 (RETURN)
X (RETURN)
READY.

Since our program ends with the RTS-command we can leave the
Mini-Assembler. When it shows: A 0338, simply press RETURN and leave
the machine code monitor by typing X (RETURN).

You can now start your first machine code program with the command:

SYS 818, If you haven't given up yet you can look at the programming
of a loop in the next chapter.

Page 57

2. A PERMANANT LOOP (INC, .JIMP)

If you wanted to change the frame colour continually, you would have
to write the following program in BASIC:

1 FOR 1I=0 TO 127
2 : POKE 65305,
3 NEXT I

4 GOTO 1

In order to change the frame colour, you can always increment the
content of memory space 65305 by one. Use command: INC address
(INCrement). This command increments the contents of address by one.
If the memory space is full (>255), it automatically reverts to zero
again. Our first command is: INC $FF19. Since we want to increment
the content of $FF19 always by one we have to jump back to this
command. For this, we can use the command IJMP address (JuMP). As our
program is to start at $0332, the second (and last) line reads: JMP
$0332. Once again, type MONITOR to enter monitor and type the
following:

A 0332 INC $FF19

A 0335 IMP $0332

With: SYS 818 you will see the first effect which cannot be realised
in BASIC.

Since there is no program end, so you cannot return with RTS into
BASIC and will have to use the RESET key.

Page 58

3. DECEISION LOOP (LDX,DEX,BNE,NOP)

The example above is now to be extended by a time loop. In order to
programme a time loop, we can for examplel

1. Set a counter to certain no.
2. Decrement counter by one
3. Check if the counter is O
4, If not, repeat the process until O.

The time taken by computer to do this is a time loop and is very
short. The program first must have a counter and secondly make a
deceision if the counter is zero.

For this purpose one of the two Index-Regi#ters (X or Y) come in
useful. The content can be between 0 and 255 (hex. $FF).

Our program is to start again with the comﬁand: INC $FF19, i.e. it is
to increment the frame colour by one. Next, the Index-Register X,
which we want to decrement is loaded with the start value similar to
the LDA-command with: LDX address; in our case: LDX #$Bl, where LDX
means LoaD X register. Decrementing the X—zegister by one is simple
and is done with the command DEX (DEdrement Xregister). After
decrementing we have to check whether the X-Register has reached O.
For this we use the command: BNE (Branch Not Equal). BNE tests
whether the previous machine command (DEX) bas set a certain Flag,
the ZERO-Flag. This flag is set (=1) when X reg. contains a 0 after
DEX operation. If not, the program jumps baﬁk to the address after
BNE: BNE $0337 i.e. it jumps back to the cpmmand DEX and forms a
loop.

In order to wait a short while the command NOP (No OPeration) can be
utilised. At the end of our program we want to start from the
beginning, i.e. IJMP $0332. The complete program looks now as follows:
A 0332 INC $FF19

A 0335 LDX #$B1

A 0337 DEX

Page 59

A 0328 BNE $0337
A 033A NOP

A 033B JIMP $0332

Try the program with: SYS 818.

Instead of the X-Register, the Y-Register qan also be used. Instead
of LDX, use LDY (LoaD Yregister) and DEY (DEcrement VYregister)
instead of DEX.

4, USING THE OPERATING SYSTEM (JSR)

If the machine program is to talk to the oqtside world e.g. operate
printer or show information on the screen, the easiest way to do this
is to use the existing routines in the operating system of the C-16.
A summary and an operating instruction of these KERNAL-Routines can
be found in chapter 4.4 of this book. As an example, erase the
machine code from the screen. In BASIC thi# would look as follows:

1 PRINT CHR$(147)

This routine, which brings a character %from the current cursor
position to the screen, begins in the operating system at address
$FD2 (hex.) and requires the ASCII-Value !of the character to be
printed in the accumulator. We obtain the character with the familiar
LDA command for the accumulator and call the routine with the command
JSR (Jump SubRoutine). The Kernel sub! routine has all the
instructions needed to print the character 'in the accumulator on the
screen. You can therefore effectively use Kernel routines to do
mundane tasks like adding, subtracting etci. The program for erasing
the screen in machine code is. |

Page 60

A 0332 LDA #3$93
A 0334 JSR $FFD2

A 0337 RTS

with SYS 818 you can now erase the screen.

5. PRINT MESSAGE (TABLE ADDRESSING)

If you want to print more than one character on the screen it is best
to programme a loop which refers to a table. The next character will
be obtained automatically from the table. The end of the table should
contain a zero, so that your program knows where to finish the loop.

The table can accessed by the command LDA address,X. This command
loads the accumulator with the CONTENTS of memory address indexed by
X register. The value in the X-Register plus the value of the address
equals the memory address from which the contents are loaded into the
accumulator- e.g. LDA $0341,X. If X=2, then the acc. will be loaded
with contents of mem. addr. $0343. If a zero (the self-defined end of
the table) is loaded into the accumulator, another Flag (the
ZERO-Flag) is set which can be tested with the command: BEQ address
(Branch if EQal). The value in the X-Register can be changed with DEX
or INX (INcrement Xregister) in order to be able to call the next
address with another LDA address,X.

A 0332 LDX #$00
A 0334 LDA $0341,X
A 0337 BEQ $0340
A 0339 JSR $FFD2

A G33C INX

Page 61

A 033D JMP $0334

A 0340 RTS

The above routine loaded the acc. with the\ contents of mem. addr.
$0341, which in our case is letter H. As 1# is not 0, it jumped to
sub routine at $FFD2. The X reg. is incremented by 1 and loops back
to get the contents of address $0341+1 i.e. $0342. The contents are
$41(E). It carries on like this until it l$ads the contents of mem.

addr. $0347 and finds it to be 0. It sets a flag, and the routine
Jumps to RTS.

To enable us to key in the table with the required message we type
into the monitor the command: M 0341, which has the effect of a hexa
decimal print out of the memory location from $0341 onwards. We move
with the cursor to the first memory location and key in the hexa
decimal ASCII values of our message. Our message is to be HELLO, the
corresponding ASCII values are: 48 41 4C 4C 4F. After you have typed
these figures (don't forget to press RETURN) the screen should look
as follows (your input in bold type): i

|
|
|

MO341

>0341 48 41 4C 4C 4F 00 00 00 :HELLO |
|

Leave the machine code monitor with: X (REﬁURN), erase screen with
the CLEAR-key and test your program with: SYS 8l8.

6. INDIRCT ADDRESSING |

In the following example, we want to filﬂ the whole screen with
hearts. In BASIC the program would look as follows:

1 FOR I=3072 TO 4071

2 : POKE 1,83 |

3 NEXT I

Watch the speed and compare later to our corresponding M/C program.
Writing on a larger area in machine code is best done with indirect
addressing; the use of a certain memory locations is carried out with
the commands:

LDA (pointer),Y
STA (pointer),Y

The content of addressed pointer plus the content of the Y-Register
equals the address from which a figure is loaded into the accumulator
(LDA) or where it will be stored (STA).

The "Pointer" consists of two consecutive memory locations, each
address is less than 256. As you know the contents of a single memory
location can only accept values between O and 255, The computer has,
however, 65535 possible memory locations. Therefore the required
address has to be divided into two parts. The lower one is stored in
the first of the two memory locations, the higher one in the
following. After that the command can be used, see the following
program:

The value $53 is stored into video RAM (screen) whose start address
is $0C00 + Y. Y is inc. by 1 until Y=256($FF) and $53 is stored from
$0C00 to $0CFF. The Y reg. becomes 0 as 1 is added to $FF and the
prog jumps to RTS.

A 0332 LDY #%$00

A 0334 LDA #3$00

A 0336 STA $DO

A 0338 LDA #$%$0C

A 033A STA $D1

A 033C LDA #$53

Page 63

A 033E STA ($D0),Y
A 0340 INY
A 0341 BNE $033E

A 0343 RTS

After call-up with SYS 818, 256 hearts will be printed on the screen.
As only a block of 256 can be written on, jn order to write the next
block, you have to increment the upper bytd of pointer by one and
repeat the process. Since the screen medory is 1K long and 1K
consists of 4 blocks, the above loop has tq be repeated 4 times. The
X-Register can be used as counter.

Change the above program as follows:

A 033 LDX #$04

A 0340 STA ($D0),Y
A 0342 INY

A 0343 BNE $0340

A 0345 INC $D1

A 0347 DEX

A 0348 BNE $0340
A O34A RTS

1

| /
The four blocks are - $0CO0-$OCFF, $0DO0O-$ODFF, $OEOO-$OEFF,
$0F00-$0FE7. INC $D1 increments the contents of $00 by 1 i.e. from
$0C to $0D. The X reg. acts as a loop counter.

Make sure that the program was programmedi correctly (with monitor
command: D 0332 034A). Return to BASIC and try it with SYS 818. If

Page 64

everything is o.k. the speed will surely convince you of the speed of
M/C programming. For comparison: our BASIC program requires for this
task approx. 5.9 seconds, the M/C program approx. 16 Milli-seconds
(=16/1000 seconds); i.e. it is in this case 370 times faster than the
corresponding BASIC~-program!

7. SUB~ROUTINES (JSR,RTS)

You can write small sub routines to do mundane tasks i.e. move a
sprite X a no. of pixels. You can then call this routine from main
prog. whenever you need it. The sub routine must have RTS, so that
the prog. returns to the next instruction in the main prog.. The
command is JSR address. This was already used for printing a message
on the screen. The return from this routine is done with the command
RTS (ReTurn from Subroutine). This does not jump back into BASIC but
to the next address after JSR address.

Erasing the screen can also look as follows:

A 0332 JSR $0336

A 0335 RTS

A 0336 LDA #$93

A 0338 JSR $FFD2

A 033B RTS

You can now test your first sub-routine with the familiar SYS 818.

8. COMPARISON COMMANDS (CMP,CPX,BCC,BCS)
Often the content of certain memory addresses has to be compared with
constants or the contents of other memory locations. This is

automatically done with the ZERO Flag when comparing to ZERO (see

Page 65

paragraph 3). When comparing something else you have to use one of
the comparison commands CMP (CoMPare accu.), CPY (ComPare Yregister)
or CPX (ComPare Xregister).

After the command it needs to know, what to compare it with. With the
sign, the contents of the corresponding processor register are
compared with the indicated number. Without the # sign, with the
contents of the addressed memory location.

If the contents of the accumulator are greater or equal to the
indicated number or the contents of the addressed mem. location, a
certain flag, the CARRY Flag, is set to 1. On equality the ZERO Flag
is set to 1 and on unequality to O.

If the contents of the accumulator are less, the CARRY-Flag is set to
0.

CARRY = ZERC
Acc.> or = Ind. No, 1 0
Acc. = Ind. No. 0 1
Acc.< or = Ind. No. 0 0

The information in the Flags can now be used by the branching
commands:

BNE Branch if Not Equal ---Zero Flag

BEQ Branch if Equal -==---- " "

BCC Branch if Carry Clear ---Carry Flag

BCS Branch if Carry Set ----- " "

Here is an example to test branching:

A 0332 LDA #$F1
A 0334 CMP $FF19

Page 66

A 0337 BCC $033C

A 0339 INC $FF19

A 033C RTS

As long as the acc. is less than or equal to the contents of $FF19,
CARRY flag is 0, the program loops back changing the frame colour.

A further example of a comparison test:

A 0332 LDX $0C00

A 0335 CPX #3$01

A 0337 BEQ $0340

A 0339 BCS $0341

A 033B LDA #%$00

A 033D STA $FF19

A 0340 RTS

A 0341 LDA #%F1

A 0343 STA $FF19

A 0346 RTS

If an A is shown in the top left screen corner, the program doesn't

do anything, it jumps immediately back into BASIC. Characters with a
larger code switch the frame to white, the smaller ones (@) to black.

Anybody who has reached this stage and tried all examples and even
modified a bit can be sure to enjoy the Assembler-Programming. For

Page 67

more thorough introduction to Machine Code programming, you should
study some of many books publihed on the subject. We can recommend
the book "Programming the 6502" by Rodney Zaks, published by SYBEX
publishers (the 6502 has exactly the same command set as the 7501 in
the C-16), as well as many other books which deal with the 6502. The
next chapter will give you a good idea of all the commands of the
6502/7501. And now: keep up your courage!!!

Page 68

A Few More Tips For Beginners

Machine language is best learnt by studyihg other machine language
programs. Such programs are published in magazines. Familiarise
yourself with the program even if it refers to a different computer
but uses the Micro-Processor 6502 (or 6510). Make sure, you
understand the code. This requires persistence, specially if it deals
with a technique unknown to you.This can prove extremely tiresome but
with enough patience you will be the winner.

Once you have looked at other machine language programs, you have to
start writing some of your own. They can bb utility programs for your
BASIC-programs or a pure machine language program. Remember :
Practice makes perfect!

You should also use the routines available in the computer in a
program which helps you to write, prepare and check machine programs.
An example is KERNAL (see chapter 4.4) which allows keyboard scan,
text display, control of peripherals such as cassette player, disc
drives, printer, etc.. KERNAL is extremely powerful and its usage 1Is
highly recommended.

Page 69

THE COMMANDS OF THE 7501-PROCESSOR

The Iintegral Micro Processor 7501 in the C-16 is a further
development of series 6502 (Atari, Applei PET, VC-20) and 6510
(C-64). It is therefore fully software compatible to them and
possesses exactly the same command set, This facilitates the
re-writing of programs of these computersE tremendously. The only
difference is the different programming #f input/output (Floppy,
Cassette), graphics or sound. If you have a|program for the Commodore
C-64 you can consult our comparison table iﬁ chapter 4.6.

For all beginners, as an introduction |and for all advanced
programmers for consultation, we now list a(phabetically all commands
of the 7501 (6502/6510 resp.). A detaiﬂed description of each
individual command would be too elaborate for this book. For this
purpose there are already enough books in the bookshops.

The list shows the command and a short description, the way of
addressing, the assembler language format, the OPC-Code, the no. of
Bytes and clock cycles (+ signifies that, ddpendlng on memory pages,
1 or 2 more cycles are used).

COMMAND Description Addressing Assembler = Op No.Of No.Of
Format ; Code Bytes Cycles
... e
ADC Add To Acc. |
With Carry :
Inmediate ADC #0perand 69 2 2
Zero Page ADC Operanq 65 2 3
Zero Page,X ADC Operand,X 75 2 4
Absolute ADC Operand 6D 3 4
Absolute,X ADC Operand,X 7D 3 4+
Absolute,Y ADC Operand,Y 79 3 4+
(Indirect,X) ADC (Operand,X) 61 2 6
2 5+

(Indirect,Y) ADC (Operand,Y) 71

Page 70

AND Logical AND
To Accumulator

Immediate AND #Operand 29 2 2
Zero Page AND Operand 25 2 3
Zero Page,X AND Operand,X 35 2 4
Absolute AND Operand 2D 3 4
Absolute,X AND Operand,X 3D 3 4+
Absolute,Y AND Operand,Y 39 3 4+
(Indirect,X) AND (Operand,X) 21 2 6
(Indirect,Y) AND (Operand,Y) 31 2 5+
ASL Accumulator
Shift Left
Accumulator ASL A OA 1 2
Zero Page ASL Operand 06 2 5
Zero Page,X ASL Operand,X 16 2 6
Rbsolute ASL Operand OE 3 6
Absolute,X ASL Operand,X IE 3 7
BCC Branch On
Carry Clear
Relative BCC Operand 90 2 2+
BCS Branch On
Carry Set
Relative BCS Operand BO 2 2+
BEQ Branch On
Result = O
Relative BEQ Operand FO 2 2+
BIT Test Mem.
Bits
Zero Page BIT Operand 24 2 3
Absolute BIT Operand 2C 3 4
BMI Branch On
Result Minus
Relative BMI Operand 30 2 2+

Page 71

BNI

Branch On Result
Not Equal to O

Relative BNE Operad DO 2 2+
BPL Branch On
Result Plus
Relative BPL Operand 10 2 2+
BRK Force
Break
Implied BRK Operand 00 1 7
BVC Branch On
Overflow Clear
Relative BVC Operand 50 2 2+
CLC Clear Carry
Flag
Implied CLC 18 1 2
CLD Clear Decimal
Mode
Implied CLD D8 1 2
CLI Clear IRQ Int.
Disable Bit
Implied CLI 58 1 2
CLV Clear Overflow
Flag
Implied CLV B8 1 2
CMP Compare Mem.
And Acc.
Immediate CMP #Operand C9 2 2
Zero Page CMP Operand C5 2 3
Zero Page,X CMP Operandgx D5 2 2
Absolute CMP Operand CD 3 4
Absolute,X CMP Operand,X DD 3 44
Absolute,Y CMP Operand,Y D9 3 4+
(Indirect,X) CMP (Operand,X) Cl 2 6+
(Indirect,Y) CMP (Operand,Y) Dl 2 5+

Page 72

CPX Compare Mem.

And Index X
Immediate CPX #Operand EC 2 2
Zero Page CPX Operand E4 2 3
Rbsolute CPX Operand EC 3 4
CPY Compare Mem.
And Index Y
Immediate CPY #Operand CO 2 2
Zero Page CPY Operand Ca 2 3
Absolute CPY Operand cc 3 4

DEC Decrement Mem.
By One
Zero Page DEC Operand Cé6 2 5
Zero Page,X DEC Operand,X Dé 2 6
Rbsolute DEC Operand CE 3 6
Absolute,X DEC Operand,X DE 3 7

0 S G - S . S G S S e T G, = = G G S A G G Ga S S S S G T S G S (S G G e R e e G e T NS GV G G S S G S S T S 0 S S — — -

DEX Decrement

Index X By 1
Implied DEX CA 1 2
DEY Decrement
Index Y By 1
Implied DEY 88 1 2

EOR Exclusive OR
Mem. With Acc.

Immediate EOR #0Operand 49 2 2
Zero Page EOR Operand 45 2 3
Zero Page,X EOR Operand,X 55 2 4
‘Absolute EOR Operand 4D 3 4
Absolute,X EOR Operand 5D 3 4+
Absolute,Y EOR Operand 59 3 4+
(Indirect,X) EOR (Operand),X 41 2 6
(Indirect),Y EOR (Operand),Y 51 2 5+

Page 73

INC Increment Mem.

By One
Zero Page INC Operand E6 2 5
Zero Page,X INC Operand,X Fé& 2 6
Absolute INC Operand EE 3 6
Absolute,X INC Operand,X FE 3 7
INX Increment Index
X By One
Implied INX E8 1 2
INY Increment Index
Y By One
Implied INY ce 1 2
JMP - Jump To
An Address
Absolute JMP Operand 4C 3 3
Indirect JMP (Operand) 6C 3 5
JSR Jump To
Sub-Routine
Absolute JSR Operand 20 3 6
LDA Load Acc.
With Mem.
Immediate LDA #Operand A9 2 2
Zero Page LDA Operand A5 2 3
Zero Page,X LDA Operand,X B5 2 4
Absolute LDA Operand AD 3 4
Absolute,X LDA Operand,X BD 3 44
Absolute,Y LDA Operand,Y B9 3 44
(Indirect,X) LDA (Operand,X) Al 2 6
(Indirect),Y LDA (Operand),Y Bl 2 5+
LDX Load X Reg.
Immediate LDX #Operand A2 2 2
Zero Page LDX Operand A6 2 3
Zero Page,Y LDX Operand,Y Bé 2 4
Absolute LDX Operand AE 3 4
Absolute,Y LDX Operand,Y BE 3 b4+

Page 74

LDY Load Y Reg.
Immdiate LDY #Operand AO 2 2
Zero Page LDY Operand A4 2 3
Zero Page,X LDY Operand,X B4 2 4
Absolute LDY Operand RC 3 4
Absolute,X LDY Uperadd,x BC 3

™ S - — G - e - - o -——— - G e A S i S G S G U S R W SU G G G S5 S S s i

LSR Shift 1 Bit

- O e - -

Right
Accumulator LSR A 4A 1 2
Zero Page LSR Operand 46 2 5
Zero Page,X LSR Operand,X 56 2 6
Absolute LSR Operand 4E 3 6
Absolute,X LSR Operand,X 5E 3 7

NOP No Operation
Implied NOP EA 1 2

ORA Logical OR Acc.

With Mem.
Immediate ORA #0perand 09 2 2
Zero Page ORA Operand 05 2 3
Zero Page,X ORA Operand,X 15 2 4
Absolute ORA Operand oD 3 4
Absolute,X' ORA Operand,X 1D 3 4+
Absolute,Y ORA Operand,Y 19 3 4+
(Indirect,X) ORA (Operand,X) Ol 2 6
(Indirect),Y ORA (Operand),Y 1l 2 5+
PHA Push (Store)
Acc. In Stack
Immediate PHA 48 1 3
PHP Store Status
Word in Stack
Immediate PHP 08 1 3
PLA Get Acc.
From Stack
PLA : 68 1 4

Page 75

PLP Get Prog. Sta.

ROL Rotate Left

N Y S0 B s G5 e G S S G Gl S e Y = e AP B W

Rotate Right

D . - - —— . T S - G S e G T G I G

Word From Stack

Return From

Interrupt

Accumulator

Zero Page

Zero Page,X

Rbsolute
Absolute, X

ROL
ROL
ROL
ROL
ROL

Operand
Operand, X
Operand
Operand, X

Accumulator

Zero Page

Zero Page, X

Absolute
Absolute, X

A

Dperand
Operand, X
Operand
Operand,x

—— —— = - -

W W NN -

- _ Y - —— — - S — T G - G - -

- — o 58 G . - G - T S G G . D . G G e A G Sy G T G T G W IS G GUY SN S ST G G S A G G G M Ske S G G D G G G Y SR GP M G @A e G G G o

Return From
Sub-Routine

T T G- G A T S W G e Sme G v S R WS S G W S G G G G T G S G G e G WIS G S G S A G SR U U G G GO G G R G s R MR W W G S G A s e e S

Subtract From
Acc. With Carry

Immediate
Zero Page

Zero Page,X

Absolute

SBC #0Operand

SBC
SBC
SBC

Absolute,X SBC
Absolute,Y SBC

(Indirect,X) SBC
(Indirect),Y SBC

Page

Operand
Operand, X
Operand
Operand, X
Operand, Y

76

F9

(Operand, X) El
(Operand),Y F1

NN W WWENDNDN

SEC Set Carry

Flag
Implied SEC 38 1 2
SED Set Decimal
Mode
Implied SED F8 1 2
SEI Set IRQ
. Disable Bits
Implied SEI 78 1 2
STA Store Acc.
In Memory |
Zero Page STA Operand 85 2 3
Zero Page,X STA Operand,X 95 2 4
Absolute STA Operand 8D 3 4
Absolute,X STA Operand,X 9D 3 5
Absolute,Y STA Operand,Y 99 3 5
(Indirect,X) STA (Operand,X) 81 2 6
(Indirect),Y STA (Operand),Y 91 2 6

STX Store X Reg.

In Memory
Zero Page STX Operand 86 2 3
Zero Page,Y STX Operand,Y 96 2 4
Absolute STX Operand 8E 3 4
STY Store Y Reg.
In Memory ,
Zero Page STY Operand 84 2 3
Zero Page,X STY Operand,X 94 2 4
Absolute STY Operand 8C 3 4
TAX Transfer Acc.
To X Reg.
Implied TAX ‘ RA 1 2
TAY Transfer Acc.
To Y Reg.
Implied TAY A8 1 2

Page

77

TSX Transfer Stack
Pointer To X REG
Implied TSX BA 1 2

TXA Transfer X Reg.
To Acc.
Implied TXA 8A 1 2
TXS Transfer X Reg.
To Stack Pointer

Implied TXS 9a 1 2
TYA Transfer Y Reg.
To Acc.
Implied TYA 98 1 2

Page 78

4.4 THE USE OF KERNAL-ROUTINES

There is one question which worries all programmers : What to do if
the manufacturer changes the computer operating system? Lengthy
machine language programs possibly won't function properly without
extensive modifications. In order to reduce this problem, Commodore
has developed a principle to ease the programmer's lot. This is the
so called KERNAL. Essentially KERNAL is a ;standard jump table for
input, output and memory management programs in the operating system.
If the system program is improved or modifﬁed, the location of the
individual programs in ROM can change, but the KERNAL jump table is
also altered accordingly.

KERNAL is the operating system of the Commodore 16. All Iinputs,
outputs and the memory controls are controlled by the KERNAL.

There are 39 input/output routines and other very useful utilities
which can be accessed via the table. Using these, you not only save
time but can also adapt your programs froﬂ one Commodore computer to
the other. In the C-16, the jump table is on the last page of the
memory in ROMe.eeees. ($FF49-FFFS).

To use the KERNAL jump table, first you sdt up th parameters that the
KERNAL routines needs to work. Then you jump to the suitable position
in the KERNAL jump table using JSR instruction. After finishing the
routine, KERNAL transfers the control to your m/c program.

Depending on the KERNAL-Routine used, parameters are returned to your
program in certain registers. You will fidd the relevant registers
for the individual KERNAL routine in the description of the KERNAL
subroutine.

KERNAL FUNCTIONS ON POWER UP OR RESET

1) After switching on the power the Stack bointer is initially set to
0, and the decimal mode is erased.

2) Then KERNAL checks if a ROM with auto start (e.g. a game

Page 79

cartridge) is available at address $8000 (dec. 32768). If it is, the
normal initialisation is interrupted and the control transferred to
the program stored in ROM. If not, then the normal system
initialisation is continued.

3) Next KERNAL initialises all input/output facilities. The serial
bus is initialised, the cassette motor switched off and the TED Chip
is loaded with the default values.

4) Now KERNAL checks, if the STOP key is préssed. If yes, it branches
to the machine language monitor.

5) As the next step KERNAL carries out a RAM test and sets the RAM
Pointers at the top and the bottom. Alsoc th¢ Zero Page is initialised
and the cassette buffer prepared.

6) Finally KERNAL carries out the following routines: The I/0
Vectors are set to default values. The screén erased and all screen
editor variables set to zero. Then the BASIC Interpreter is started
at $8000.

WORKING WITH KERNAL

When writing programs in machine code, it is often convenient to use
operating system routines. These consist of input/output, access to
the system clock, memory management and similar functions. It is a
waste of time to write them yourself as it is so easy to access the
operating system, It helps to speed up the programming too.

In order to work with a KERNAL routines, fimst you have to make all
the necessary preparations. If, for example, a routine initially
requires the call up of another KERNAL routine, then you have to call
this first. If the routine requires a numbeq in the accumulator, then
this number must be there. If the conditions are not fulfilled then

Page 80

the routines cannot work properly.

After carrying out all preparations you cail the routine via the JSR
command. All accesible KERNAL routines are| structured sub routines
with RTS. When the KERNAL routine has finiihed its task, the control
is returned to your program at the instruction after the JSR.

Many KERNAL routines return error codesl in the status word or
accumulator when faults occur. If you want! to program well and create
acceptable machine programs these fault indicators must not be
ignored. ‘

That's all there is in using the KERNAL. TﬂREE steps.

1) Set Up
2) Call Routine

3) Error Handling

i
The following conventions are used for tHe description of KERNAL
routines:

NAME: Name of KERNAL routine.
|
PURPOSE : Short description of purpose of the KERNAL routine.

ADDRESS: This is the call address of theE KERNAL routine in hexa
decimal.

TRANSFER: Registers under this heading are used for transferring
parameters to and from KERNAL routines. »

|
PREPARATION: Certain KERNAL routines require a data to be setup
before they can operate. They may also requ1re calling of other
KERNAL routines beforehand.

Page 81

ERRORS: A return from KERNAL routine with the CARRY Flag set
indicates that an error was encountered. The accumulator contains the
EITOT NO..

STACK REQUIREMENT: This is the actual nb oﬁ stack bytes used by the
KERNAL routine. |

REGISTER: All registers used by the KERNAL rroutine are listed here.

DESCRIPTION: Here you will find a short description of the functions
of the KERNAL routine.

PROCEDURE: How to use the routine.

EXAMPLE: Illustrates operation with a small example.

Page 82

NAME: ACPTR

PURPOSE: Get data from the serial bus
RDDRESS: $FFAS

TRANSFER: A

PREPARATION: TALK, TKSA

ERRORS: See READST

STACK REQUIREMENT: 13

REGISTER: A, X

Description:

This routine is used to receive data from a device on the serial bus,
e.g. a disc drive. This routine gets a data byte directly from the
serial bus. This data is transferred to the accumulator. As
preparation, the TALK routine has to be caﬂled to command the device
on the serial bus to send data on bus. If the input device needs a
secondary command,it must be sent using éthe KERNAL routine TKSA
before calling this routine. ERRORS are reFurned in the status word.
Use READST routine to read the status word.

PROCEDURE :

1) Command the device on the serial bus toiprepare to send data to
the C-16. (Use KERNAL routines TALK and TKSA.)

2) Call this routine (via JSR).

3) Use or store data.

EXAMPLE :

$1010 ;Fetch a}byte from bus
$1010 20 A5 FF JSR ACPTR

$1013 85 DO STA DATA

Page 83

NAME: CHKIN

PURPOSE: Open a channel for input
ADDRESS: $FFC6

TRANSFER: X i
PREPARATION: (OPEN)
ERRORS

STACK REQUIREMENT: None

REGISTER: A, X
Description:

Each logical file that has already been openped by the KERNAL routine
OPEN can be defined as an input channel by this routine. Naturally
the device has to be an input device otherwise an error will occur
and the routine will abort.

If the data is not via the keyboard, this routine has to be called
before usin CHRIN or GETIN. If the input is| via the keyboard and no
other input channels are open, then this routine and the OPEN routine
are not required.

If this routine is used with a device jon the serial bus, it
automatically sends the talk address via the bus and the secondary
address, if one was specified by the OPEN routine.

PROCEDURE :

1) Open logical file.
2) Load register X with the number of logid@l file to be used.

3) Call this routine (with JSR).

Possible Errors:
#3 : File not open
#5 : Device Not Present.

#6 : File is not an input file.

EXAMPLE :

$1010 ;Preparatﬁon for input
$1010 ;From logﬁcal file 2
$1010 A2 02 LDX #2

$1012 20 Cé6 FF JSR CHKIN

Page 85

NAME: CHKOUT

PURPOSE: Open a channel for output
ADDRESS: $FFC9

TRANSFER: X

PREPARATION: (OPEN)

FAULT INDICATION: O, 3, 5, 7 (see READST)
STACK REQUIREMENT: 4+

REGISTER: A, X

Description:

A logical file number created by the KERNAL routine OPEN can be
defined as an output channel. Naturally it has to be an output device
otherwise an error will occur and the routine will be aborted.

Before data can be sent to an output device you have to call this
routine unless you want to use the screen of the C-16 as an output
device. If so and no other output channel are defined, then this
routine and the OPEN routine are not needed.

When opening the channel for serial bus this routine automatically

sends the LISTEN address specified by the OPEN routine (and possibly
also a secondary address).

Page 86

Procedure:

1) Use the KERNAL OPEN routine to specify a logical file no, a listen
address and a secondary address (if required).

2) Load register X with the logical file number used in the OPEN

command.

3) Call this routine (via JSR).

Possible Errors:
#3 : Fil not open
#5 : Device Not Present.

#7 : NoT an output file.
EXAMPLE :

$1010 A2 03 LDX #3

$1012 20 C9 FF JSR CHKOUT

sDefine logical file 3

;as output channel

Page 87

NAME: CHRIN

PURPOSE: Get A Character From Input.
ADDRESS: $FFCF

TRANSFER: A

PREPARATION: (OPEN, CHKIN)

ERRORS: O (see READST)

STACK REQUIREMENT: 7+

REGISTER: A, X

Description:

This routine will get a data byte from the channel already set up as
the input channel by the KERNAL CHKIN. If CHKIN was not used to
define another input channel, a keyboard input is expected. The data
byte is returned in the accumulator. After calling, the channel
remains open.

Inputs with the keyboard are dealt in a special way. First the cursor
is switched on and flashes until a CR (Carriage Return) is typed. All
characters in one line (max. 88 characters) are stored in the BASIC
input buffer. These characters can be received one at a time by
calling this routine for each individual character. When "Carriage
Return" is retrieved, the whole line has been processed. When this
routine is called again, the procedure is repeated,i.e. flashing of
the cursor.

Procedure (from the keyboard):

1) Call this routine (Use JSR).

Page 88

2) Retrieve a data byte by calling this routine

3) Store Data Byte
4) Check, if it Ii the last data byte (is it a CR?).

5) If not, go to step 2.

EXAMPLE :

$1010 A2 00 LDY #$00 :prepare Y Register
$1012 20 CF FF JSR CHRIN

$1015 99 D0 O STA DATA,Y ;store data

$1018 C8 INY
$1019 C9 13 CMP #CR ;Is it a "Carriage Return"?
$101B DO F5 BNE $1012 :No,fetch next byte

Procedure (From Other Devices):

1) Use KERNAL routines OPEN and CHKIN.
2) Call this routine (via JSR).

3) Store data.

EXAMPLE :

$1010 20 CF FF JSR CHRIN

$1013 8D FO O STA DATA

Page 89

NAME: CHROUT

PURPOSE: Output A Character

ADDRESS: $FFD2

TRANSFER: A

PREPARATION: (CHKOUT, OPEN)
ERRORS: O (see READST)
STACK REQUIREMENT: 8+

REGISTER: A
Description:

This routine will output a character to an already open channel. Use
the KERNAL OPEN and CHKOUT routines to set up the output channel
before calling this routine. If this call is omitted, data will be
sent to default output device (3, screen). The data byte to be sent
is loaded in the accumulator and this routine called. The data is
then sent to the stipulated output device. After call the channel
remains open.

Be careful if this routine is used for data transfer to a serial
device, since data will be sent to all open output channels on the
bus. If you do'nt want it to happen, all output channels of serial

bus ,apart from the required channel, have to be closed with KERNAL
routine CLRCHN. ~

Procedure:
1) If necessary use KERNAL routine CHKOUT (see above).

Page 90

2) Load data to be sent into accumulator.

3) Call this routine.

EXAMPLE:

$1010

$1010 A2 04
$1012 20 C9 FF
$101 A9 41

$1017 20 D2 FF

LDX #4

JSR CHKOUT

LDA #"A"

JSR CHROUT

;Replace BASIC command:CMD 4,"A";
;Logical File #4

;Open output channel

;Send character

Page 91

NAME: CIOUT

| PURPOSE: Output A Byte Over a Serial Bus
RDDRESS: $FFAB

TRANSFER: A

PREPARATION: LISTEN, (SECOND)

ERRORS: see READST

STACK REQUIREMENT: 5

REGISTER: None
Description:

This routine is used for information transfer to devices on serial
bus. By calling this routine a data byte is transferred to serial bus
with full serial Handshake. Before calling this routine, LISTEN has
to be called to command a device on serial bus to get ready to
receive data. (If a secondary address is required, it has to be sent
using KERNAL routine SECOND.)

The accumulator is loaded with a Byte which is sent as data via the
serial bus. A device has to be ready for data receipt, otherwise the
status word will show "Timeout". This routine buffers one character
i.e holds the previous character to be sent back. If you call KERNAL
routine UNLSN to end data transfer, the buffered character 1is sent
with EOI. Then the command UNLSN is sent to the device.

Page 92

Procedure:

1) Use KERNAL routine LISTEN (and possibly SECOND).
2) Load one Data Byte in the accumulator.

3) Call this routire to send the data byte.

EXAMPLE :

$1010 A9 58 LDA #"X" ;Send an X to serial bus

$1012 20 A8 FF JSR CIOUT

Page 93

NAME: CINT

PURPOSE: Initialise Screen Editor And TED chip
ADDRESS: $FF81

TRANSFER: None

PREPARATION: None

ERRORS: None

STACK REQUIREMENT: 4

REGISTER: A, X, Y

Description:

This routine initialises TED Chip in the Commodore 16. Also the
KERNAL screen editor is initialised. This routine can be called via a
program module of the C-l6.

Procedure:

1) Call this routine.

EXAMPLE ¢
$1010 20 81 FF JSR CINT sInitialise TED chip
$1013 20 00 20 JIMP RUN ;Start main program

Page 94

NAME: CLALL

PURPOSE: Close All Files
ADDRESS: $FFE7

TRANSFER: None
PREPARATION: None

ERROR : None

STACK REQUIREMENT: 11

REGISTER: A, X
Description:

This routire closes all open files, the pointers in the open file
table are reset and all files closed. The routine CLRCHN will be
automatically called for resetting the input/output channels.

Procedure:
1) Call this routine.
EXAMPLE ¢

$1010 20 E7 FF JSR CLALL ;Close all data banks and
$1013 | sReset I/0 channels

$1015 20 00 20 JMP RUN ;Start main program

Page 95

NAME: CLOSE

PURPOSE: Closing a logical file
ADDRESS: $FFC3

TRANSFER: A

PREPARATION: None

ERRORS: 0, 240 (see READST)
STACK REQUIREMENT: 2+

REGISTER: A, X, Y
Description:

This routine is used for closing a logical file after all
inputs/outputs operations on the file are finished. The routine Iis
called after the accumulator is loaded with the logical file number.
It is the same number which was used on opening the file with the
OPEN routine.

Procedure:

1) Load accumulator with the number of the logical file to be closed

2) Call this routine.

Page 96

EXAMPLE :

$1010 ;Close channel 15

$1010 A9 OF LDA #15

$1012 20 CC FF JSR CLOSE

Page 97

NAME: CLRCHN

PURPCOSE: Clear Input/Output Channels

ADDRESS: $FFCC
TRANSFER: None
PREPARATION: None
ERRORS :

STACK REQUIREMENT: 9

REGISTER: A, X

Description:

This routine is called to clear all open channels and restore the
input/output channels to their default values. Normally it is called
after opening other input/output channels (e.g. Cassette or Disk) and
using them for I/0 operations. The default input device no. is O
(keyboard) and the default output device is 3 (screen).

If one of the channels to be closed is the serial port, an UNTALK
signal is sent first to clear the O/P channel or an UNLISTEN is sent
to clear the output channel. If this routine is not called (and all
connected devices on the serial bus stay active) then several units
can receive the same data from the Commodore 16 at the same time.One
way to take advantage of this would be for the printer to TALK and
for disk to listen. In this way a disk data file can be printed
directly.

When using the KERNAL routine CLALL, this routine will be called=-up
automatically.

Page 98

Procedure:

1) Call this routine via the JSR-instruction.

EXAMPLE :

$1010 20 CC FF JSR CLRCHN

Page 99

NAME: GETIN

PURPOSE: Get A Character From The Keyboard
ADDRESS: $FFE4

TRANSFER: A

PREPARATION: CHKIN, OPEN

ERRORS: see READST

STACK REQUIREMENT: 7+

REGISTER: A (X,Y)

Description:

The routine takes a character from the keyboard queue and transfers
it as an ASCII value to the accumulator. If the queue is empty, the
value 0 is loaded in the accumulator. Characters are put in the queue
automatically by an interrupt driven keyboard scan routine which
calls routine SCNKEY. A maximum of 10 characters can be stored in the
keyboard memory. If the memory is full then additional characters are
ignored until at least one character has been removed from the queue.

If RS-232 0/P is used then only register A 1s used and a single

character quoted. For checking see READST. If the O/P is the serial
bus, the cassette or the screen, call the BASIN-routine.

Page 100

Procedure:

1) Call this routine with a JSR-instruction.

2) Check, if a 0 is stored in the accumulator (empty memory).

3) Process data.

EXAMPLE :

$1010 ; Wait for a character
$1010 20 E4 FF JSR GETIN
$1013 C9 00 CMP {0

$1015 FO F9 BEQ $1010

Page 101

NAME: IOBASE

PURPOSE: Define 1/0 Memory Page
ADDRESS: $FFF3

TRANSFER: X, Y

PREPARATION: None

ERROR @

STACK REQUIREMENT: 2

REGISTER: X, Y

Description:

This routine sets the X and Y registers to the address of the memory
section where the memory mapped 1/0 devices are located. This address
can then be used, together with relative addresses to access the
memory mapped I/0 devices of the Commodore C-16. Register X contains
the lower order address byte and register Y the upper order address
byte.

With this routine the compatibility between the VC-20, the C-64 and.
the C-16 is guaranteed. If the input/output registers for a machine
code program are set by calling this routine, they will also be
compatible with future versions of the Commodore C-16 with regard to
KERNAL and BASIC.

Page 102

Procedure:

1) Call this routine with the JSR-instruction.

2) Store registers X and Y in consecutive positions.

3) Load the Y register with the offset

4) Access the input/output location.

EXAMPLE: (only PLUS/4)

$1010
$1010
$1013
$1015
$1017
$1019

$1018B

20 F3 FF

86 DO

84 D1

A2 02

R9 00

91 DO

;Data direction register of User-Port on O
JSR IOBASE

STX POINT ;Place BASIS-register

STY POINT+1

LDY #2

LDA #0 ;0ffset for DDR of User-Port

STA (POINT),Y;Put DDR on O

Page 103

NAME: IOINIT

PURPOSE: Initialise 1I/0 Devices
'ADDRESS: $FF84

TRANSFER: None

PREPARATION: None

ERROR :

STACK REQUIREMENT :None

REGISTER: A,X,Y
Description:

With this routine all input/output devices and routines are
initialised. It is normally called as part of the initialising
program module of the Commodore 16.

Procedure:
1) Call this routine with JSR
EXAMPLE ¢

$1010 20 84 FF JSR IOINIT

Page 104

NAME: LISTEN

PURPOSE: Command A Device To Listen
ADDRESS: $FFB1

TRANSFER: A

PREPARATION: None

ERROR : see READST

STACK REQUIREMENT: None

REGISTER: A

Description:

This routine commands a device on serial bus to receive data. A
device number between 0 and 31 is loaded into the accumulator before
calling this routine. LISTEN will OR the number bit by bit to convert
to a LISTEN address. The addressed device will then go into 1listen
mode and be ready to accept data.

Page 105

Procedure:

1) Load the accumulator with the
listen.

2) Call this routine with JSR.

EXAMPLE :

$1010 ;Unit no
$1010 A9 08 LDA #8

$1012 20 Bl FF JSR LISTEN

number of device commanded to

. 8 on LISTEN

_Page 106

NAME: LOAD

PURPOSE: Load RAM From Device
ADDRESS: $FFD5

TRANSFER: A,X,Y

PREPARATION: SETLFS, SETNAM
ERRORS: 0,4,5,8,5, READST
STACK REQUIREMENT: None

REGISTER: A,X,Y

Description:

This routine directly loads data byte from an input device into the
memory of the Commodore 16. It can also be used for comparing data
from a device with the data in the memory while the data stored in
RAM remains unchanged (VERIFY).

Accumulator is set to O for loading or to 1 for VERIFY, If input
device was OPENed with a secondary address of 3, the header will be
ignored. In that case registers X and Y must contain the start
address for loading. If secondary address 1, O or 2 are selected, the
data will be loaded into the memory from the position specified by
the header. This routine returns the address of the highest RAM
location which was loaded.

Before calling this routine KERNAL routines SETLFS and SETNAM have to
be called-up.

A LOAD with keyboard (0), RS-232 (2) or screen (3) is not possible.

Page 107

Procedure:

1) Call SETLFS and SETNAM. If a relocated load is required,
routine SETLFS to send the secondary address O.

2) Load acc. with O for LOAD or 1 for VERIFY.

3) If loading is to relocated address, regisfers X and Y must be
to the start address for the load.

4) Call this routine using the JSR-instruction.

EXAMPLE :

$1010 ;Load a program from cassette
$1010 A9 01 LDA #DEVICEl ;Set device no.

$1012 A2 00 LDX "FILENO ;Set logical file no.

$1014 AD 00 LSY CMD1 ;Set secondary address

$1016 20 BA FF JSR SETLFS

$1019 A9 OC LDA #NAMEL-NAME jLoad acc. with no. of

$1019 ; characters in file name
$101B A2 32 LDX #<NAME sLoad X and Y with address
$101D A0 10 LDY #>NAME ;of program name ($1032)

$101F 20 BD FF JSR SETNAM

$1022 A9 00 LDA #0 ;Set Flag for load

Page 108

use

set

$1024
$1026
$1028
$1028
$102D
$102F
$1032
$1035
$1038

$103B

A2 FF LDX #$FF

RO FF LDY #$FF

20 D5 FF JSR LOAD

86 2D STX VARTAB

84 2E STY VARTAB+1

4C 00 20 IMP START

50 52 4F .BYT "FILE NAME*
47 52 41

4D 4D 4E

41 4D 45

sDefault start

;End address of program

Page 109

NAME: MEMBOT

EURPOSE: Set Bottom Of Memory
ADDRESS: $FF9C

TRANSFER: X, Y

PREPARATION: None

ERROR : None

STACK REQUIREMENT: None

REGISTER: X, Y

Description:

This routine is used to set the bottom memory pointer. If, on call up
of this routine, the accumulator carry bit is set then the pointer to
the bottom RAM byte is returned in registers X and Y. The pointer
start value of the Commodore C-16 without additional memory expansion
is $1000 (4096 decimal). If the accumulator carry bit is 0 on call up
of this routine, then the values of registers X and Y are transferred
to the low and high bytes of the pointer to the start of RAM.

Procedure: (Read the bottom of RAM):

1) Set carry flag

2) Call this routine

Page 110

Procedure (Set the bottom of memory):

1) Clear the carry flag

2) Call this routine

EXAMPLE

$1010 ;Move bottom of memory
s up 1 page (256 Bytes)

$1010 38 SEC ;Read memory bottom

$1011 20 9C FF JSR MEMBOT
$1014 E8 INY
$1015 18 CLC ;Set memory bottom to new value

$1016 20 9C FF JSR MEMBOT

Page 111

NAME: MEMTOP

PURPOSE: Setting pointer to the top of memory
ADDRESS: $FF99

TRANSFER: X, Y

PREPARATION: None

ERRORS: None

STACK REQUIREMENT: 2

REGISTER: X, Y

Description:

This routine is used to set the top of RAM. If, on call up of this
routine,the carry bit is set, then the pointer to the top of RAM is
loaded into registers X and Y. If the accumulator carry bit is clear
on call up of this routine then the contents of the registers X and Y
are loaded in the top memory pointer, changing the top of memory.

EXAMPLE

$1010 ;Release RS-232 Buffer
$1010 38 SEC

$1011 20 99 FF JSR MEMTOP ;Read memory top

$1014 88 DEX

$1015 18 CLC

$1016 20 99 FF JSR MEMTOP ;Set new top of memory

Page 112

NAME: OPEN

PURPOSE: Opening A Logical File
ADDRESS: $FFCO

TRANSFER: None

PREPARATION: SETLFS, SETNAM
ERRORS: 1,2,4,5,6,240,READST
STACK REQUIREMENT: None

REGISTER: A, X, Y
Description:

This routine is used to open a logical file. After opening a logical
file, it can be used for 1/0 operations. This routine is called by
most KERNAL input/output routines to create the relevant logical data
files. No parameters are required setting, but KERNAL routines SETLFS
and SETNAM have to be called beforehand.

Procedure:

1) Use routine SETLFS.
2) Use routine SETNAM.

3) Call this routine.

Page 113

EXAMPLE :

$1010
$1010
$1010
$1012
$1014
$1016
$1019
$1018
$101D
$101F
$1022

$1025

A9

A2

RO

20

A9

A2

RO

20

20

49

02

25

10

sThis routine simulates the BASIC

;command:OPEN 15,8,15,"10"

LDA #NAME1-NAME ;Length of file name (2)

LDX #<NAME

LDY #>NAME

BD FF JSR SETNAM

OF

08

OF

LDA #15

LDX #8

LDY #15

BA FF JSR SETLFS

CO FF JSR OPEN

30

.BYT "IO"

;Address of file name in

;X and Y Reg. ($1025)

Page 114

NAME: PLOT

PURPOSE: Read/Set Cursor Position
ADDRESS: $FFFO

TRANSFER: A,X,Y

PREPARATION: None

ERRORS: None

STACK REQUIREMENT: 2

REGISTER: A,X,Y

Description:

If accumulator carry flag is set when this routine is called, then
the present cursor position on the screen (in X and Y coordinates) is
returned in registers X and Y. X is the row number (0-24) of the
cursor position, Y the column number (0-39). If on call, the carry
bit is clear, the cursor moves to the position X, Y (according to
registers X and Y).

Procedure (reading cursor position):

1) Set carry flag
2) Call this routine

3) Read X and Y positions from registers X and Y resp.

Page 115

Procedure (placing cursor position):

1) Clear carry flag
2) Write required cursor position in registers X and Y.

3) Call this routine,

EXAMPLE:
$1010 sPlace cursor in
$1010 ;Tow 10, column 5

$1010 A2 OA LDX #10
$1012 AQ 05 LDY #5
$1014 18 cLC

$1015 20 FO FF JSR PLOT

Page 116

NAME: RAMTAS

PURPOSE: RAM Test
ADDRESS: $FF87
TRANSFER: A,X,Y
PREPARATION: None
ERRORS: None

STACK REQUIREMENT: 2

REGISTER: A,X,Y

Description:

With this routine, RAM is tested and the top/bottom memory pointers
set. Also the memory locations $0000 - $0101 and $0200 - $07FF are
cleared. Furthermore the cassette buffer is initialised and the
screen start positioned at $0CO0. Normally this routine is called as
part of the power on module of the Commodore l6.

Procedure:

1) Ccall this routine.

EXAMPLE:

$1010 20 87 FF JSR RAMTAS

Page 117

NAME: RDTIM

PURPOSE: Read system clock
ADDRESS: $FFDE

TRANSFER: A,X,Y
PREPARATION: None

ERROR : None

STACK REQUIREMENT: 2

REGISTER: A,X,Y

Description:

This routine is used to read the system clock. The clock resolution
is 1/60 s. This routine returns 3 bytes. The accumulator contains the
most significant byte, the X-register the next significant byte and
the Y-register the least significant Byte.

Procedure:

1) Call this routine.

Page 118

EXAMPLE :

$1010

$1013

$1015

$1017

20 DE FF

84 DO

86 D1

85 D2

JSR RDTIM

STY TIME

STX TIME+1

STA TIME+2

Page 119

NAME: READST

PURPOSE: Read Status Word
ADDRESS: $FFB7

_TRANSFER: A

PREPARATION: None

EhRORS: None

STACK REQUIREMENT: 2

REGISTER: A

Description:

This routine returns the current status of the I/0 devices in the
accumulator. Normally this routine is called after new communication
to an I/0 device. It gives you information about device status or
errors which occurred during input/output.

The bits transferred to the accumulator contain the following
information: '

Page 120

ST ST READ SERIAL TAPE LOAD/VERIFY

BIT NUMB. FROM READ/
POSITION VALUE CASSETTE WRITE
0] 1 Write
Timeout
1 2 Read
Timeout
2 4 Short Block Short Block
3 8 Long Block Long Block
4 16 Unrecoverable Unrecoverable
Read Error Read Error
5 32 Checksum Checksum
Error Error
6 64 End Of file End of line
7 128 Tape end Device not End Of Tape
present

Page 121

Procedure:

1) Call this routine.

2) Decode program information in registre A.

EXAMPLE :
$1010 sCheck for file-end
$1010 sduring reading

$1010 20 B7 FF JSR READST
$1013 49 40 AND #64 ;Test for EOF (End Of File)

$1015 DO 25 BNE EOF ;Branch when placed

Page 122

NAME: RESTOR

PURPOSE: Reset normal status of system
ADDRESS: $FF8A

PREPARATION: None

ERROR ¢ None

STACK REQUIREMENT: 2

REGISTER: A,X,Y

Description:

This routine restores the default values of all system vectors used
in KERNAL and BASIC routines and Interrupts are reset. The individual
system vectors can be read and prepared with KERNAL-routine VECTOR.

Procedure:

1) Call this routine.

EXAMPLE:

$1010 20 8A FF JSR RESTOR

Page 123

NAME: SAVE

PURPOSE: Transfer RAM Contents To A DEVICE
ADDRESS: $FFD8

TRANSFER: A,X,Y

PREPARATION: SETLFS, SETNAM

ERRORS: 5,8,9,READST

STACK REQUIREMENT: None

REGISTER: A,X,Y

Description:

This routine saves a section of memory. The memory is saved from an
indirect address in the zero page given in the accumulator to the
fixed address in registers X and Y. Before calling this routine, the
routines SETLFS and SETNAM must be called. Saving on device 1
(cassette), file name is not necessary (Though recommended). If you
try to save on a different device without file name, an error will
result.

It is not possible to save on device O (keyboard), 2 (RS-232) and 3
(screen), as an error will occur and the routine aborted.

Procedure:

1) User routines SETLFS and SETNAM (if not to be saved on tape
without file name.)

Page 124

2) Load two consecutive locations of zero page with the pointer to
the start of save (as a standard in the 7501 the lower Byte comes

first and then the higher Byte).

3) Load address of pointer in zero page in the accumulator.

4) Load low and high byte respetively of end address of save in

registers X and Y.

5) Call this routine.

EXAMPLE:

$1010 AS 01
$1012 20 BA FF JSR SETLFS
$1015 A9 00 LDA #0

$1017 20 BD FF JSR SETNAM

$101A A9 00 LDA START
$101C 85 28 STA TXTTAB
$101E A9 3C LDA START+1
$1020 85 2C STA TXTTAB+1l
$1022 A2 00 LDX END+1
$1024 A0 40 LDY END+1
$1026 A9 2B LDA TXTTAB

$1029 20 D8 FF JSR SAVE

;Device 1 (cassette)

yNo name -

;Load start address ($3C00)

s (LOW BYTE)

; (HIGH BYTE)
;Load end address ($4000) (LOW)
; (HIGH BYTE)

sLoad acc. with zero page addr.

Page 125

NAME: SCNKEY

PURPOSE: Keyboard Scan
ADDRESS: $FF9F
TRANSFER: None
PREPARATION: IOINIT
ERRORs: None

STACK REQUIREMENT: 5

REGISTER: A,X,Y

Description:

This routine will scan the Commodore 16's keyboard and check for
pressed key. If yes, which keys were pressed. This is the same
routine which is called at each Interrupt. After pressing a key, the
relevant ASCII-value is stored in the keyboard memory.

This routine is only called if the normal IRQ-interrupt is ignored.

Procedure:

1) Call this routine.

Page 126

EXAMPLE :

$1010
$1013
$1016
$1018

$101A

20 9F FF

20 E4 FF

C9 00

FO Fé

20 D2 FF

JSR SCNKEY

JSR GETIN

CMP #0

BEQ GET

JSR CHROUT

;Keyboard scan
sFetch character
sKey pressed?
;Yes, scan again

;Print character

Page 127

NAME: SCREEN

PURPOSE: Identify Screen Format
ADDRESS: $FFED

TRANSFER: X, Y

PREPARATION: None

STACK REQUIREMENT: 2

REGISTER: X,Y

Description:

This routine shows the screen format,e.g. 40 columns and 25 lines in
Y. It can be used to determine on which machine a program is running.
This function was introduced for the Commodore 64 to make your
programs more easily compatible with other computers.

Procedure:

1) Call this routine.

Page 128

EXAMPLE :

$1010 20 ED FF JSR SCREEN
$1013 86 DO STX MAXCOL

$1015 84 D1 STY MAXROW

Page 129

NAME: SECOND

PURPOSE : Transfer of secondary address for LISTEN
ADDRESS: $FF93

TRANSFER: A

PREPARATION: LISTEN

ERRORS: see READST

STACK REQUIREMENT: 8

REGISTER: A

Description:

This routine sends a secondary address to an I/0 device after calling
the LISTEN routine and device commanded to LISTEN., This routine
cannot be used for transferring a secondary address after calling the
TALK routine. :

Preparation:
1) Load secondary address to be sent in the accumulator, OR it with
$60

2) Call this routine.

Page 130

EXAMPLE :

$1010
$1010
$1010
$1010
$1012
$1014
$1017

$1019

AS 08

49 60

20 Bl FF

A9 OF

20 93 FF

LDA #8

EOR #96

JSR LISTEN

LDA #15

JSR SECOND

;Address unit no. 8
i (Floppy) with secondary

;address 15

Page 131

NAME: SETLFS |

PURPOSE: Opening A Logical Data File

ADDRESS: $FFBA

TRANSFER: A,X,Y

PREPARATION: None

ERRORS: None

STACK REQUIREMENT: 2 |

REGISTER: None

Description:

This routine will set the logical file no., device address and a
secondary address (command number) for other KERNAL routines.

The logical file no. is used by the system as a kind of key for the
file table, created by the OPEN routine. Device addresses can range
from 0-31. The following codes are used .

ADDRESS: ITEM:

Keyboard
Cass. Recorder
RS-232C
Screen
Printer on Serial Bus
Disc Drive

0 s W= O

Page 132

A device number of 4 or above refers automatically to devices on the
serial bus.

A command to the device is sent as secondary address via the serial
bus after the device number has been sent during the serial

handshake. If no secondary address is being sent, the Y register must
be set to 255.

Procedure:

1) Load logical file number in accumulator.
2) Load device number into X register.
3) Load command into Y register.

4) Call this routine.

EXAMPLE :

$1010 sLogical file 32, device no 4
$1010 ;and no command no.

$1010 A9 20 LDA #32

$1012 A2 04 LDX #4

$1014 AO FF LDY #255

$1016 20 BA FF JSR SETLFS

Page 133

NAME: SETMSG

PURPOSE: Print Out Of System Messages
ADDRESS: $FF90

TRANSFER: A

PREPARATION: None

ERRORS: None

STACK REQUIREMENT: 2

REGISTER: A

Description:

This routine controls the printing of error and control messages by
the KERNAL. When called, the errors message or control message can be
selectedd according to the contents of the accumulator.

Error message example -FILE NOT FOUND.

Control message example - PRESS PLAY ON TAPE

Bit 7

l---Error Message

Bit 6 = 1---Control Message

Page 134

Procedure:

1) Set accumulator to required value.

2) Call this routine.

EXAMPLE ¢

$1010

$1012

$1015

$1017

$101A

$101C

RS 40

20 90 FF

A9 80

20 90 FF

AS 00

20 90 FF

LDA #$40

JSR SETMSG

LDA #3$80

JSR SETMSG

LDA {0

JSR SETMSG

;Control messages

;ETTOr messages

;A1l KERNAL messages off

Page 135

NAME: SETNAM

PURPOSE: Set Up File Name
ARDDRESS: $FFBD

TRANSFER: A,X,Y
PREPARATION: None

ERRORS: None

REGISTER: None

Description:

This routine sets up the file names for the routines OPEN, SAVE or
LOAD. The no. of characters in the file name 1is loaded into the
accumulator. The address of the file name is loaded intoc registers X
and Y. The standard lower byte/higher byte format applies. The
address can be any valid system memory address from which the file
name is stored as a string.. If no file name is required, the
accumulator is loaded with 0. In this case registers X and Y can be
set to any memory address.

Procedure:

1) Load length of file name into accumulator.
2) Load lower value address byte of file name into X register.

3) Load higher value address byte of file name into Y register.

Page 136

4) Call this routine.

EXAMPLE ¢

$1010
$1012
$1014

$1016

RS 04

A2 1A

AO 10

20 BD FF

LDA #NAME1-

LDX #<NAME

LDY #>NAME

JSR SETNAM

NAME ;Load length of file name

;Load address of file name

Page 137

NAME: SETTIM

PURPOSE: Set System Clock
ADDRESS: $FFDB

TRANSFER: A,X,Y
PREPARATION: None

ERRORS: None

STACK REQUIREMENT: 2

REGISTER: None

Description:

A system clock maintained by the interrupt routine is updated every
1/60 s ("Jiffy"). The clock is 3 Bytes "long", so that it can show up
to 5,184,000 "Jiffies" (24 hrs.). Then the clock resets to 0. Before
calling this routine, the accumulator has to be loaded with the most
significant (highest) byte, the X Register with the next significant
byte and the Y Register with the least significant byte of the start
up time (in Jiffies).

Procedure:

1) Load the most significant Byte of the 3 Byte number in the
accumulator.

Page 138

2) Load next Byte in the X Register.
3) Load the least significant Byte in the Y Register.

4) Call this routine.

EXAMPLE

$1010 ;Set clock to 10 minutes

$1010 ; (=3600 Jiffies)

$1010 RS 00 LDA #0 ;Most significant Byte
$1012 A2 OE LDX #>3600 ;Next Byte-

$1014 AO 10 LDY #<3600 ;Lowest Byte

$1016 20 DB FF JSR SETTIM

Page 139

NAME: SETTMO

PURPOSE: Set Timeout Flag for Serial bus
ADDRESS: $FFA2

TRANSFER: A

PREPARATION: None

ERRORS: None

STACK REQUIREMENT: 2

REGISTER: None

Description:

This routine is exclusively used with an additional Bus-Card and is
practically of no importance for the Commodore 16.

With this routine the Timeout-Flag for the IEC-Bus is set. When this
is done the Commodore C-16 waits 64 ms for the message from a device
on IEC-Bus. If the device does not answer to the DAV-Signal (valid
data address) of the Commodore 16 within this period of time then the
computer recognizes an error and leaves the Handshake sequence. If on
call up of this routine Bit 7 in the accumulator is set to O, then
Timeouts are effective. Accordingly Timeouts are ineffective if Bit 7
is set to 1.

Page 140

Procedure (Set Timeout-Flag):

1) Set Bit 7 of accumulator to O.

2) Call this routine.

Procedure (Clearing Timeout Flag):

1) Set Bit 7 of accumulator to 1.

2) Call this routine.

EXAMPLE :

$1010 sPut Timeout-Flag
$1010 AS 00 LDA %0

$1012 20 A2 FF JSR SETTMO

Page 141

NAME: STOP

PURPOSE: STOP Key Scan
ADDRESS: $FFE1
TRANSFER: A
PREPARATION: NONE
ERRORS: None

STACK REQUIREMENT: None

REGISTER: A,X

Description:

If during an UDTIM call up the STOP key was pressed, then after
call-up of this routine the Zero Flag is set. Furthermore the
channels are reset to the default values. All other Flags remain
unchanged. If the STOP key was not pressed, the accumulator contains
1 byte of the last keyboard scan, so the operator can also check if
certain other keys were pressed.

Procedure:

1) Before this routine, UDTIM has to be called.
2) Call this routine.

3) Check for Zero Flag.

Page 142

EXAMPLE :

$1010 20 EA FF

$1013 20 E1 FF

$1016 FO FB

JSR UDTIM

JSR STOP

BNE LOOP

;Check for STOP

;Wait for STOP key

Page 143

NAME: TALK

PURPOSE: Command A Device On Serial Bus To Talk
ADDRESS: $FFB4

TRANSFER: A

PREPARATION: None

ERRORS: see READST

STACK REQUIREMENT: 8

REGISTER: A

Description:

In order to use this routine, a device no. between 0 and 31 has to be
loaded into the accumulator. When called,this routine does a logical
OR bit by bit to convert the device no. to talk address. This data is
then sent as command via the serial bus.

Procedure:

1) Load accumulator with device no

2) Call this routine.

Page 144

EXAMPLE :

$1010 s TALK command for device 4
$1010 RS 04 LDA #4

$1012 20 B4 FF JSR TALK

Page 145

NAME: TKSA

PURPOSE: Send a secondary address to a device commanded to talk

ADDRESS: $FF96
TRANSFER: A
PREPARATION: TALK
ERRORS: see READST
STACK REQUIREMENT: 8

REGISTER: A

Description:

This routine sends a secondary address via the serial bus to a TALK
device. This routine must be called with a number between 4 and 31 in
the accumulator. This no. is then sent as secondary address command
via the serial bus. It is vital to call the TALK routine before hand.
TKSA is not effective after LISTEN.

Procedure:

1) Use TALK-routine.
2) Load secondary address into accumulator, OR with 96.

3)Call this routine.

Page 146

EXAMPLE :

$1010 ;Tell device no # 4 to talk with command 7
$1010 A9 04 LDA #4

$1012 20 B4 FF JSR TALK

$1015 RS 07 LDA #7

$1017 49 60 EOR #96

$1019 20 96 FF JSR TKSA

Page 147

NAME: UNTLK

PURPOSE: Send an UNTALK command

ADDRESS: $FFAB

TRANSFER: None

PREPARATION: None

ERRORS: see READST

STACK REQUIREMENT: 8

REGISTER: A

Description:

With this routine an UNTALK command is sent via serial bus. All
commands which received a TALK command before stop data transfer.

Procedure:

1) Ccall this routine.

EXAMPLE:

$101C 20 AB FF JSR UNTLK

Page 150

NAME: VECTOR

PURPOSE: Manage RAM Vectors
ADDRESS: $FF8D

TRANSFER: X,Y

PREPARATION: None

ERROR MESSAGE: None

STACK REQUIREMENT: 2

REGISTER: A,X,Y

Description:

This routine manages all jump vectors stored in RAM. If on call up of
this routine, the accumulator carry bit is set, then the current
contents of the RAM Vectors are stored in a table whose address is
given by the contents of registers X and Y. '

When working with this routine you have to be extremely careful.
First of all the entire vector contents should be read in the user’
area, the required vectors changed and then copy the content back to
the system vectors.

Page 151

Procedure (Reading the System RAM Vectors):

1) Set Carry

2) Load registers X and Y with the required Vector Address.

3) Call this routine.

Procedure (Load System RAM Vectors):

1) Clear Carry

2) Set registers X and Y to the RAM Address Vector table to be
loaded.

3) Call this routine.

EXAMPLE:

$1010 ;Change input routine
$1010 A2 30 LDX #<USER

$1012 AO 10 LDY #>USER

$1014 38 SEC

$1015 20 8D FF JSR VECTOR ;Read old vectors
$1018 A% 00 LDA #<MYINP ;0wn input rputine
$101A 8D 3A 10 STA USER+10

$101D RS9 20 LDA #>MYINP

Page 152

$101F
$1022
$1024
$1026

$1027

8D 3B 10

A2 30

AD 10

18

20 8D FF

STA USER+11
LDX #<USER
LDY #>USER
CLC

JSR VECTOR ;Change vectors

Page 153

KERNAL ERROR MESSAGES

Listed below, you will find a list of error messages which can appear
when working with the KERNAL routines. If one of these errors occur,
the carry bit of the accumulator is set and the no. of the error
message transferred to the accumulator.

Some KERNAL I/0 routines do not work with these codes of error

messages. Instead the errors are identified by the KERNAL routine
READST.

NUMBER: MEANING:
0 Routine finished by STOP key
1 Too many open files
2 File already open
3 File not open
4 File not found
5 Device not present
é File is not an input file
7 File is not an output file
8 File name is missing
9 Illegal device no

Page 154

4.5 MEMORY MAP

ADDRESS ADDRESS LABEL DESCRIPTION

(hex) (dec)

$0000 0 PDIR 7501 Data Direction Register

$0001 1 PORT 7501 8 Bit I/0-Port

$0002 2 SRCHTK Flag for loops

$0003-0004 3-4 ZPVEC1 New Start Address (RENUMBER)

$0005-0006 5-6 ZPVEC2 Step Width (RENUMBER)

$0007 7 CHARAC Search Character

$0008 8 ENDCHR Flag:Searching for inverted
comma at end of a String

$0009 9 TRMPQS Screen column from last TAB

$000A 10 VERCK Flag: O=LOAD, 1=VERIFY

$OOdB 11 COUNT Input buffer counter, No.

of elements
$000C 12 DIMFLG Flag:Standard-Field Dimensioning

$000D 13 , VALTYP Variable Flag: $FF=String
$00=Numerical

$000E 14 INTFLG Numeric Flag: $80=Integer
$00=Floating Point

Page 155

$000F
$0010

$0011

$0012
$0013
$0014-0015
$0016
$0017-0018
$0019-0021
$0022-0023
$0024-0025
$0026
$0027
$0028
$0029
$002A
$0028-002C
$002D-002E
$002F-0030

$0031-0032

15

16

17

18

19

20-21

22

23-24

25-33

34=35

36-37

38

39

40

41

42

4344

45-46

47-48

49-50

DORES

SUBFLG

INPFLG

TANSGN

CHANNL

L INNUM

TEMPPT

LASTPT

TEMPST

INDEX1

INDEX2

RESHO

RESMOH

RESMO

RESLO

TXTTAB

VARTAB

ARYTAB/

STREND

Flag:Data Scan
Flag:User Function Call-Up

Flag: $00=INPUT, $40=GET
$98= READ

Flag: ATN Sign/Comparison
Flag:Current I/0 Prompt

Store For BASIC Integers.
Pointer: Temporary String Stack
Last Temporary String Vector
Stack For Temp. String Vector
Store For Auxiliary Pointer 1
Store For Auxiliary pointer 2

Product Area For Multiplication

" " ” n

" " " n

Pointer: Start BASIC
Pointer: Start BASiC Variables
Pointer: Start of BASIC Arrays

Pointer: End of Arrays

Page 156

$0033-0034

$0035-0036

$0037-0038

$0039-003A
$003B-003C
$003D-003E
$003F-0040
$0041-0042
$0043-~0044
$0045-0046
$0047-0048
$0049-004A

$004B-004C

$004D

$004E-004F
$0050-0051
$0052
$0053

$0054-0056

51-52

53-54

55-56

57-58
59-60
61-62
63-64
65-66
67-68
69-70
71-72
73=74

75-76

77

78-79

80-81
82
83

84-86

FRETOP

FRESPC

MEMSIZ

CURLIN

TXTPTR

FNDPNT

DATLIN

DATPTR

INPPTR

VARNAM

VARPNT

FORPNT

OPPIR

OPMASK

DEFPNT

DSCPNT

HELPER

JMPER

Pointer: Start Strings
(Moving Down)

Auxiliary Pointer for Strings

Pointer: Top Of RAM
Available For Basic

Current BASIC Line No.

Previous BASIC Line No.

Pointer:BASIC Statement For CONT

Current DATA Line No.
Pointer: Current DATA Address
Vector: INPUT Routine

Current BASIC Variable Name
Current Variable Address
Variable Pointer For FOR/NEXT

Y Save;Operator Save
Basic Pointer Save

Comparison Mask: l= Larger,
2= Equal, 4= Smaller

Pointer:variable Of DEF FN

Pointer:String Descriptor

Flag: HELP or LIST

Jump Vector For Functions

Page 157

$0057-0060
$0061
$0062-0065
$0066
$0067
$0068
$0069
$006A-006D
$006E
$006F
$0070
$0071-0072
$0073-0074
$0075
$0076-0078
$0079-007B
$007C-007D
$007E-CO7F
$0080
$0081

$3082

8796

97

98-101

102

103

104

105

106-109

110

111

112

113-114

115-116

117

118-120

121-123

124-125

126-127

128

129

130

TEMPF1

FACEXP

FACHO

FACSGN

SGNFLG

BITS

ARGEXP

ARGHO

ARGSGN

ARISGN

FACOV

FBUFPT

AUTINC

MVDFLG

KEYNUM

DSDESC

TOS

TMPTON

VOICNG

RUNMOD

POINT

Numeric Work Area
Accumulator l-Exponent

" l-Mantissa

" 1-Sign
Pointer:Series Evaluation Const.

Accumulator 1 Hi-Order(Overflow)

" 2 Exponent
" 2 Mantissa
" Sign

Sign Comp. Acc 1 Vs Acc 2
Accumulator 1: Lo Order Rounding
Pointer: Cassette Buffer
Increment On AUTO-Command, O=0ff
Flag:1=10K Reserved For Graphics
Temporary store for MID$-Command
Descriptor for DS$
Top Of Run-Time Stacks
Working Area (Sound)

" " "
Flag For RUN ($00=No, $80=Yes)

Flag for DOS-Command

Page 158

$0083

$0084
$0085
$0086
$0087
$0088
$0089
$008A

$0088

$008C-Q08D
$008E
$008F
$0050
$0091
$0092
$0093

$0094

$0095

$0096

131

132

133

134

135

136

137

138

139

140-141

142

143

144

145

146

147

148

149

150

GRAPHM

COLSEL

MCl

FG

SCXMAX

SCYMAX

LTFLAG

RTFLAG

STOPNB

GRAPNT

VTEMP1

VTEMP2

STATUS

STKEY

SPVERR

VERFCK

C3P0

BSOUR

RSAV

Current Graphics Mode ($00=Text,
$20=Hires, $60=Split Hires, $A0=
Multicolour,$E0=Split Multi Col.
Current Chosen Colour
Multicolour-Colour 1

Foreground-Colour

Max. No. Of Columns

‘Max. No. Of Rows

Flag: PAINT Left
Flag: Paint Right

Flag: Paint Stop ($00=same,$80=
Different) As Background Colour

Pointer: Bit Map Colour

Temporary Intermediate Memory
" " "

KERNAL I/0 Status Word:ST

Flag: STOP/RVS Key

Temporary Memory

Flag: 0=LOAD, l=VERIFY

Flag: Serial Bus Character In
Buffer ($00=No, $80=Yes)

Ch. In Buffer For serial Bus

Temporary memory for BASIC

Page 159

$0097 151 LDTND No. Of Open Files / Index
For File Tables

$0098 152 DFLTN Default Input Device(Norm. 0)

$0099 153 DFLTO Default O/P Device (Norm. 3)

$009A 154 MSGFLG Flag: $80=BASIC-Direct Mode,
$C0=M/C Monitor, $00=Program

$009B-009C 155-156 SAL Pointer:Tape Buff./Scroll Sereen

$009D-009E 157-158 EAL Pointer:Tape End/Program End

$009F-00A0 159-160 Tl Temporary Memory

$00A1-00A2 161-162 T2 " "

$00A3-00A5 163-165 TIME Clock (approx. 1/60 s)

$00A6 166 R2D2 Register for serial bus

$00A7 167 TPBYTE Register for cassette routine

$00A8 168 BSOUR1 Register for serial bus

$00A9 169 FPVERR Temporary Colour-vector

$00AA 170 DCOUNT Register for cassette routine

$00AB 171 FNLEN Length of file name

$00AC 172 LA Logical file number

$00AD 173 SA Current secondary address

$00AE 174 FA Current device no.

$00AF-00BO 175-176 FNADR Current file name

$00B1 177 ERRSUM Cass. error counter

Page 160

$00B2-00B3
$00B4~-00B5
$00B6-0087
$00B8-00B9
$00BA-00BB
$00BC-00BD
$00BE-00BF
$00C0-00C1
$00C2
$00C3
$00c4-00C
$00Cs
$00C7
$00C8-00C9
$00cA

$00CB

$oocc
$00CD
$00CE

$00CF

178-179

180-181

182-183

184-185

186-187

188-189

190-191

192-193

194

195

196-197

158

199

200-201

202

203

204

205

206

207

STAL

MEMUSS

TAPEBS

T™P2

WRBASE

IMPARM

FETPTR

SEDSAL

RVS

INDX

LSXP

SFDX

CRSW

PNT

PNTR

QTSW

SEDT1

TBLX

DATAX

INSRT

I/0 Start Address

Basic loading address
Pointer:Load end addr. (tape)
Address for VECTOR

Pointer: Cassette buffer data.
Pointer : String for Primms
Pointer:Long Fetch Routine
Temp. Mem.:Scroll Register
Flag: RVS-Ch.($12=Yes,$00=No)
Pointer: End of line for input
Cursor X/Y-Position for input
Flag: Pressed key ($40=none)
Flag:s INPUT or GET from K/B
Pointer:Current scr. line add.
Cursor position current line

Flag: Editor in inverted comma
mode (O=No)

Length of current screen line
Current pos.of cursor line no
Last character (I/0)

Flag:INST-Mode.>0=No of ins.

Page 161

$00D0-00D7
$00D8-00E8
$00E9
$00EA-OOEB
$00EC-00EE
$00EF
$00FO
$00F1-00F 2
$00F 3
$00F 4
$00F5
$00F6
$00F 7
$00F 8
$00F 9
$00FA
$00FB
$00FC
$00FD
$00FE

$OOFF

208-215

218-232

233

234-235

236-238

239

240

241-242

243

244

245

246

247

248

249

250

251

252

253

254

255

CIRSEG
USER
KEYTAB
NDX
STPFLG
T0
CHRPTR
BUFEND
CHKSWM
LENGTH
PASS
TYPE
USEKDY
XSTOP
CURBNK
XON
XOFF
SEDT2

LOFBUF

Res. for speech synthesizer
Res. for application software
Working area

Pointer:Current screen colour
Vector: K.B. Decoding Tab.$E026
No of char.in key board buffer
Flag:Pause (CTRL-S/T)

Register for M/C. Monitor
Zero-Page-Address for M/C.Mon.

" " " " LU n

Register for check sum

Block-Type

bit7=1: Write, bite=1: read
Register for X on STOP Key Test
Present Bank~Configuration
Character to be sent for X-Qn

non " " X-0ff

Work area for Editor

Page 162

$0100-010F
$0110

$0111

$0112

$0113-0122
$0123

$0124-01FF

$0200-0258
$0259-025A
$025B-025C
$025D-02AC
$025D
$025E-026D
$02¢E
$026F
$0270-0271

-$0272

256-271

272

273

274

275-289

290

291-511

512-600

601-602

603-604

605-684

605'
606-621
622
623
624-625

626

FBUFFER

SAVEA

SAVEY

COLKEY

SYSSTK

BUF

OLDLIN

OLDTXT

XCNT

FNBUFR

DOSF1L

DOSDS1

DOSF LA

DOSF2L

Intermed.mem.for SAVE & RESTORE

" " n " n

Col./Luminiscence Table in RAM

Processor Stack

Basic I/P or Monitor Buffer
Previous BASIC Line No.
Pointer: BASIC Command for CONT
BASIC/DOS Work Area

DOS Loop Counter

Area for file names

Length of first file name

DOS (DEVICE 1)

Address of first file name

Length of second file name

Page 163

$0273

$0274-0275
$0276

$0277

$0278

$0279-027A
$0278

$027C

$027D-02AC
$02AD-02AE
$02AF -02B0
$02B1-0282
$02B3-02B4
$02B5-0286
$02B7-0288
$02B9~02BA
$028B-028BC
$02BD-02BE
$02BF-02C0
$02C1-02C2

$02C3

627

628-629

630

631

632

633-634

635

636

637-684

685-686

687-688

689-690

691-692

693-694

695-696

697-698

699~-700

701-702

703-704

705-706

707

DOSFA
DOSF2A
DOSLA
DOSFA
DOSSA
DODDID
DIDCHK
DOSSTR
DOSSPC
XPOS
YPO
XDEST
YDEST
XABS
YABS
XSGN
YSGN
FCT1
FCT2
ERRVAL

LESSER

DOS (Device 2)
Address of second file name
DOS logical address

" device address

" secondary address

" Disk-ID

ID-Flag
DOS Output Buffer

" Work Area
Current X Pos:Graphic Cursor
Current Y Pos:Graphics Cursor
X Target-Co-ordinate

Y " "

~ Absolute value of X

" Ll n Y

Sign of X

Sign of Y

Page 164

i ~aa GREATR

$02C5 709 ANGSGN $tat value of angle
$02C6-02C7 710-711 SINVAL Sines of angle

$02C8-02C9 712-713 COSVAL Cosines of angle

$02CA-02CB 714=-715 ANGCNT Temp. Reg. for angle

$02CD 717 BNR Pointer : Start (PRINT USING)
$02CE 718 ENR Pointer : End

$02CF 719 DOLR Flag: Dollar

$02D0 720 FLAG Flagf Comma

$02D1 721 SWE Counter

$02D2 722 USGN value of exponent

$02D3 723 UEXP Pointer : exponent

$02D4 724 VN No of of ch. before dec. point
$02D5 725 CHSN Flag: Adjustment

$02D6 726 VF No of ch. before dec. point
$02D7 727 NF No of ch. after dec. point
$0208 728 POSP Flag: +/-(Field)

$02D% 729 FESP Flag: Exponent (Field)

$02DA 730 ETOF Switch

$02DB 731 CFORM Character Counter (Field)
$02DC 732 SNO Preliminary Character No.

Page 165

$020D 733 BLFD Flag: Space Bar/*

$02DE 734 BEGFD Pointer to beginning of field
$020F 735 LFOR Length of Format String
$02E0 736 ENDFD Pointer to end of field
$02CC-02CD 716-717 XCENTR

$02CE-Q2CF 718-719 YCENTR

$0200-02D1 720-721 XDIST1

$0202-02D3 722-723 YDIST1

$02D4-02D5 724-725 XDIST2

$02D6-02D7 726-727 YDISTZ

$0208-0209 728-729 DISEND

$02DA 730 COLCNT Column Counter: CHAR Command
$020B 731 ROWCNT Row " " "
$02DC 732 STRCNT For CHAR Command

$02CC-02CD 716-717 XCORD1 Pixel 1, X Co-ordinate
$02CE-02CF 718-719 YCORD1 Pixel 1, Y Co-ordinate
$0200-02D1 720-721 BOXANG Rotating Angle-Box
$02D2-02D3 722-723 XCOUNT

$02D4-0205 724-725 YCOUNT

$02D6-02D7 726-727 BXLENG Length of one side

Page 166

$02D8-02D9

$02DA-020B

$02CC-02CD
$02CE-02Cf
$02D0-02D1
$02D2-02D3
$02D4-02D5
$02D6-0207
$0208-0209
$02DA-02DB

$02DC-02DD

$02DE-02DF

$02E0-02E1

$02E2-02E3

$02CD

$02CE

728-729

730-731

716=717

718-719

720-721

722-723

724-725

726-727

728-729

730-731

732~733

734=735

736-737

738-739

717

718

XCORD2

YCORD2

XCIRCL

YCIRCL

XRADUS

YRADUS

ROTANG

ANGBEG

ANGEND

XRCOS

YRSIN

XRSIN

YRCOS

KEYLEN

KEYNXT

Pixel 2, X Co-ordinate

Pixel 2, Y Co-Ordinate

Centre of circle-X co-ordinate
Centre of circle-Y co-ordinate
X-Radius
Y-Radius

Rotating Angle

Circle-Segment-Angle Start
non " " End

X Radius * Cosine of
rotating angle

Y Radius * Sine of
rotating angle

X Radius * Sine of
rotating angle

Y Radius * Cosine of
rotating angle

Page 167

$02CF 719 STRSZ Length of String Variables

(SHAPE)
$02D0 720 GETTYP Set Shape-Mode
$02D1 721 STRPTR Counter for String Position
$02D2 722 OLDBYT 0ld Bitmap byte
$02D3 723 NEWBYT variable for rew string or
Bitmap-Byte
$02D4 724
$02D5-02D6 725-726 XSIZE Length of Shapes in X-Direction
$02D7-02D8 727-728 YSIZE " " " Y-Direction
$02D9-02DA 729-730 XSAVE Temporary memory for X size
$02DB-02DC 731-732 STRADR Memory for Shape or
string descriptor
$020D 733 BITIDX Pointer to a Bit in a Byte
$02DE-02E1 734-737 SAVSIZ Temporary Memory
$02E4 740 . CHRPAG High byte of a Character ROM
address for CHAR-Command
$02E5 741 BITCNT Register for GSHAPE
$02E6 742 SCALEM Flag: SCALE Mode ($00=0ff)
$02E7 743 WIDTH Flag: Double Pixel Size
$02E8 744 FILFLG Flag: Colour a rectangle
(BOX Command)
$02E9 745 BITMSK Temporary Memory for Bit Mask

Page 168

$02EA
$02EB
$02EC
$02ED-02EE
$02EF
$02F0

$02F1

$02F2-02F3

$02F4-02F5

$02FE-02FF
$0300-0301
$0302-0303
$0304-0305
$0306-0307
$0308-0309
$030A-030B

$030C-030D

$030E-030F

$0310-0311

746

747

748

749-750

751

752

753

754-755

756-757

766-767

768-769

770-771

772-773

774-775

776=777

778-779

780-781

782-783

784-785

NUMCNT

TRCFLG

T3

T4

VTEMP3

VTEMP4

VTEMPS

ADRAY1

ADRAYZ2

BNKVEC

IERROR

IMAIN

ICRNCH

IQPLOP

IGONE

IEVAL

IESCLK

IESCPR

IESCEX

Length of String

Flag: TRACE Mode ($00=0ff)

Intermediate Mem., for DIRECTORY
" " " "

Temporary Memory for Graphics

No. of Graphic Parameters

Parameter: $0l=relative
$00 = absolute

Pointer to conversion routine
Comma after Integer

Pointer to conversion routine
Integer after Comma

Vector: Function Module (cart.)
Vector:BASIC Error Mess.($8686)
Vector:BASIC Warm Start ($8712)
vector:BASIC Token gener. $8956
Vector: BASIC Text list ($8B6E)
Vector BASIC Command exec.$8BD6
Vector:BASIC Token Eval. ($9417)

Vector:BASIC User Token
generation $896A
Vector: Create keyword $8B88

Vector: Prepare User Token $8C8B

Page 169

$0312-0313
$0314-0315
$0316-0317
$0318-0319
$031A-031B
$031C-031D
$031E-031F
$0320-0321
$0322-0323
$0324-0325
$0326-0327
$0328-0329
$032A-0328
$032C-032D
$032E-032F
$0330-0331
$0332-03F2
$0332

$0333-0334
$0335-0336

$0337-0346

786-787

788-789

790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-805

806-807

808-809

810-811

812-813

814-815

816-817

818-1010

818

819-820

821-822

823-838

ITIME

CINV

CBINV

IOPEN

ICLOSE

ICHKIN

ICKOUT

ICLRCH

IBASIN

IBSOUT

ISTOP

IGETIN

ICLALL

USRCMD

ILOAD

ISAVE

TAPBUF

Vector: Interrupt (Clock) $CE42

Vector: Hardware Interrupt $CECE

Vector: BRK-Interrupt
Vector :Kernal
Vector:Kernal
Vector :Kernal
Vector:Kernal
Vector :Kernal
Vector:Kernal
Vector:Kernal
Vector:Kernal
Vector:Kernal

Vector:Kernal

OPEN Routine $EF53

CLOSE

CHKIN

CHKOUT

CLRCHN

CHRIN

CHROUT

STOP

GETIN

CLALL

Vector:Monitor Break

"

n

$EESD
$ED1S
$EDEO
$EFOC
$EBES
$EC4B
$F265
$EBDI
$EFO08

$FA44C

Vector:Kernal LOAD Routine $FO4A

Vector:Kernal SAVE Routine $F1A4

Tape Buffer

File type(0=BASIC,1=M/C)
Start Address (low/high)

End Address (low/high)

Program-Name (16 characters)

Page 170

$03F3-03F 4

$03F5-03F6

$03F7-0436

$0437-0454

$0455-0472

$0473-0478

$0479-0484

$0485-0493

$0494-04A1

$04A2-04A4

$04A5-040F

$04B0O-04BA

$04BB-04C5

$04C6-04D0

$04D1-04DB

$04DC~04E6

$04E7

$04E8

$04E9

$O4EA

1011-1012
1013-1014
1015-1078
1079-1108
1109-1138

1139-1144

1145-1156
1157-1171

1172-1185

1186-1188
1189-1199
1200-1210
1211—1221
1222-1232
1233-1243
1244-1254

1255

1256
1257

1258

WRLEN

RDCNT

INPQUE

ESTAKL

ESTAKH

CHRGET

CHRGOT

QNUM

INDSUB

ZEROC

INDTXT

INDINL

INDIN2

INDSTL

INDLOW

INDFMO

PUFILL

PUCOMA

PUDOT

PUMONY

Data Counter (Write)
Data Counter (Read)
RS-232 Input Buffer (64 Bytes)
Tape Error Stack (Low Bytes)
" " "

(High Bytes)

Subroutine: Read next Byte from
BASIC-Text

Read again same Text-Byte

Subroutine for loading from
optional bank

Numerical constant for BASIC
Text pointer

Index 1

Index 2

String 1

Lowtr

Facmo

Fill Character by PRINT USING
(Standard: Space Bar)

Comma symbol
Dot Symbol

Currency Character

Page 171

$04EB-Q4EE
$04EF

$04F0-04F 1

$04F2-04F 3

$04F 4

$04F 5-04F 6
$04F 7

$O4LF 8-04F9
$04F A-04FB
$04FC-04FD
$O4FE-Q4FF
$0500

$0501-0502
$0503-0507
$0508

$0509-0512
$0513-051C
$051D-0526
$0527-0530

$0531-0532

1259-1262

1263

1264-1265

1266-1267

1268

1269-1270

1271

1272-1273

1274-1275

1276-1277

1278-1279

1280

1281-1282

1283-1287

1288

1289-1298

1299-1308

1309-1318

1319-1328

1329-1330

TMPDES
ERRNUM

ERRLIN

TRAPNO

TMPTRP
ERRTXT
OLDSTK
TMPTXT
TMPLIN
MTIMLO
MTIMHI
USRPOK
USRADD
RNDX
DEJAVU
LAT
FAT
SAT
KEYD

MEMSTR

Temporary memory for INSTR
Last Error Number

Row no. in which last
error occurred ($FFFF=NO error)

Reference to row no. for
ON ERROR GO TO

Temporary register for TRAP
Intermediate Memory for TRAP
BASIC Text Pointer to last error
DO-Memory for BASIC Text Pointer
DO-Memory for row no.

Low byte of sound 1/2 length
High byte of sound 1/2 length
USR Jump Command

USR Address (low/high)

Start Value for RND

Flag: Cold or warm start

Table of logical file numbers
Table of device numbers

Table of secondary addresses
Keyboard Buffer (FIFO)

Pointer: Start address of

Page 172

$0533-0534 1331-1332

$0535

$0536

$0537

$0538

$0539

$053A

$0538

$053C
$053D
$053E
$053F

$0540

$0541
$0542
$0543

$0544

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1246

1347

1348

MS1Z

TIMOUT

FILEND

CTALLY

CBUF VA

TPTR

FLTYPE

COLOR

FLASH

HIBASE

XMAX

RPTFLG

KOUNT

DELAY

SHFLAG

LSTSHF

RAM for operating system
Pointer:End of RAM Op. system

Flag: Timeout (overrun) of
(optional) IEC-Bus

l=end of file reached
othewise O

No. of characters in buffer
(for Read and Write)

No. of all valid characters
in buffer (read only)

Pointer: next ch. in buffer R/W
or Read and Write)

Type of tape file

ActiveyAttribute Byte (colour,
brightness, flashing)

Flag: Character flashes ($00=No)
Unused

Video RAM start (Page)

Size of keyboard buffer

Flag: Key repeat ($80=all
$40=none, $00=only DEL,CRSR,SPC)

Counting speed for repeat
Counter for repeat delay
Flag: Keys SHIFT,CTRL,CBM key

Last SHIFT Sample of keyboard

Page 173

$0545-0546
$0547
$0548
$0549
$054A
$054B
$054C-054E
$054F
$0550
$0551
$0552
$0553
$0554
$0555
$0556
$0557
$0558
$0559
$055A
$0558

$055C

1349-1350

1351

1352

1353

1354

1355

1356-1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

KEYLOG

MODE

AUTQODN

LINTMP

ROLFLG

FORMAT

MSAL

WRAP

T™MPC

DIFF

PCH

PCL

FLGS

ACC

XR

YR

SP

INVL

INVH

CMPFLG

BAD

Pointer: K.B Decoding Table
Flag:SHIFT $80=No,$00=Yes
Flag:Aut.Scroll. (down)0=0n()=0ff
Intermediate mem. in scr.Pr-out

" " " "
Work Mem.of Machine Code Monitor
For assembler

Temporary Memory for assembler

" " " n

n " L1 n

Program-Counter (high)
" " (low)
Processor-Flags
Accumulata of Processor
X-Register " "
Y-Register * "
Processor Stack Pointer

Memory for Machine-Monitor

LL] " " n

Used by various Monitor Routines

Page 174

$055D
$055€
$055F -0566
$0567-05E6
$05E7
$05E8
$05E9
$05EA
$05EB
$05EC-06EB
$05EC-0SEF
$05F0-05F 1
$05F2
$05F 3
$05F4
$05F 5-065D
$065E-06EB
$06EC-07AF
$07B0-07CC
$0780

$078B1

1373

1374

1375-1282

1383-1510

1511

1512

1513

1514

1515

1516-1771

1516-1519

1520-1521

1522

1523

1524

1525-1629

1630-1771

1772-1967

1968-1996

1968

1969

KYNDX

KEYIDX

KEYBUF

PKYBUF

KDATA

KDYCMD

KDYNUM

KDYPRS

KDYTYP

SAVRAM

PAT

LNGIMP

FETARG

FETXRG

FETSRG

AREA

APECH

STKTOP

TAWKVA

WROUT

PARITY

Character counter: Function Key
Pointer: Strings function key
Length of function key strings
Memory for Function key strings
Temp. Mem, For data after DMA
Selection, if DMA. Read or Write
DMA device na.

$FF=DMA present, otherwise $0C
Temporary Memory for DMA.
Banking routines page

Physical Address (Table)
Long-Jump (Address)

(Accumulator)
n m (X-Register)
m » (Status-Register)
RAM-Field for Bank-Switéhing
noon for Speech Synthesizer
Pseudo Stack: BASIC Interpreter
Tape working values

Byte to be written on cassette

Temporary Memory for parity

Page 175

$0782
$0783
$07B5
$07B6
$0787
$07B8-07B9
$07BA-07BB
$07BC-078D
$07BE
$078F
$07C0-07C3
$07C4
$07C5
$07C6
$07¢C7
$07C8-07CB
$o7ce
$07CD
$07CE
$07CF

$07D0

1970

1971

1973

1974

1975

1976-1977

1978-1979

1980-1981

1982

1983

1984-1987

1988

1989

1990

1991

1992-1995

1996

1997

1998

1999

2000

TT1

T72

RDBITS

ERRSP

FPERRS

DSAMPL

DSAMP2

ZCELL

SRECQV

DRECOV

TRSAVE

RDETMP

LDRSCN

CDERRM

VSAVE

T1PIPE

ENEXT

uouTQ

UOUTFG

SOUTQ

SOUNFG

Temporary Memory

Temporary Memory

Local Index for READBYTE-Routine

Pointer: Error-Stack
No of errors on pass 1

Time Constant
" "
" "

Stack Pointer for STOP-Key
oo " DROP-Key

Parameters sent af'ter RDOBLOK

Temporary Memory for RDBLOK

No of errors on RD Countdown
Temporary Memory for VERIFY
Temporary Memory for T1

Read Error

User Char. to be sent (RS-232)

(O=empty, l=full)
System Character to be sent

(O=empty, 1=full)

Page 176

$07D1 2001 INQFPT Pointer to start of input buffer

$0702 2002 INQRPT " " end of " "
$07D3 2003 INQCNT No of Char. in Input Buffer
$07D4 2004 ASTAT Temporary status of ACIA
$07D5 2005 AINTMP Temporary memory for INPUT
$07D6 2006 ALSTOP Flag: Local Pause

$0707 2007 ARSTOP Flag: Remote Control Pause
$0708 2008 APRES Flag: Marks presence of ACIA

$07D9-07E4 2009-2020 KLUDES Indirect Routine (downloaded)

$07E5 2021 SCBOT Screen window: bottom edge

$07E6 2022 SCTOP " " top edge

$07E7 2023 SCLF " " left edge

$07e8 2024 SCRT " " right edge

$07E9 2025 SCRDIS

$07EA 2026 INSFL Flag: automatic inserting

$07EB 2027 LSTCH Last printed character

$07EC 2028 LOGSCR Memory for Screen Administration
$07ED 2029 TCOLOR Temp.reg.for color on INST & DEL

$07EE~-07F1 2030-2033 BITABL Row Link Table for Screen
$07F2 2034 SAREG Save Accumulator on SYS-Command

$07F3 2035 SXREG Save X-Register " " "

Page 177

$07F4
$07F5
$07F6
$07F7

$07F8

$07F9

$07FA
$07FB
$07FC

$07FD

$07FE-O7FF

BEFORE CALLING HI-RES. GRAPHICS

$0800~0BE7
$0C00-0FE7
$1000-3FFF
$1000-7FFF

$1000-FCFF

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046-2047

2048-3047

3072=-4071

4096-16383

4096-32767

4096-64767

SYREG

SPREG

LSTX

STPDSB

RAMROM

COLSW

FFRMSK

VMBMSK

LSEM

PALCNT

TEDATR

TEDSCN

BASBGN

BASBGN

BASBGN

Save Y-Register " " "
Save SP-Register " " "
Currently pressed key: CHR$(n),
Flég: CTRL~S (O=open, 6=closed)

RAM/ROM-Switch over to machine
code monitor ($00=ROM, $80=RAM)

RAM/ROM-Switch over for colour
Brightness-Table:$00=R0M, $80=RAM

ROM-Mask for divided screen
Video RAM Mask for " "
Motor control tape recorder

Auxiliary counter for clock on
PAL-System

Unused

Colour-RAM (Text Mode)

Video-RAM (Text Mode)

Basic RAM - Clé
BASIC RAM ~——=-Cl6+16K
BASIC RAM=cwcaea Clé+64K or PLUS4

Page 178

$1800-1BE7
Mode)

$1C00-1FE7
$2000-3F3F

$1000-17FF
Cleé

$4000-7FFF
Cl6+16K

$4000-FCFF

AFTER CALLING HI-RES GRAPHICS

6144-7143

7168-8167

8192-161591

4096-6143

16384-32767

16384-64767

PLUS4 :C16+64K

$8000-CFFF

$D000-D3FF

$D400-D7FF

$D800~-FBFF

$FCO0-FCFF

$FDO0-FDOF

$FD10-FDIF

$FDDO-FDDF

$FEQO-FEFF

TEDATR Luminscence Table (Graphics
TEDSCN Colour Table (Graphics Mode)
GRBASE Bitmap Graphics Screen
BASBGN BASIC RAM —-mccemcmccnmcccce-

BASBGN BASIC RAM —eemmmeeeee o

BASBGN BASIC RAM —————

PLUS 4 ONLY

32768-53247

53248-54271

54272-55295

55296-64511

64512-64767

64768-64783

64784~64799

64976-64991

65024-65279

BASIC Interpreter

Character ROM (Capitals/Graphics Ch. set
Character ROM (Small /Capital Character
Operating System

ROM Banking Routines

ACIA (Only PLUS/4)

6529 Parallel Port (Only PLUS/4)

Module Bank Port

DMA Disk System

Page 179

4,6 TED CHIP ADDRESSES ($FFO0-$FF3F)

REG. ADDRESS ADDRESS BITS DESCRIPTION
HEX. DEC.

o $FFO0 65280 Timer 1, Reload Low

1 $FFOL 65281 Timer 1, Reload High

2 $FFO2 65282 Timer 2, Low

3 $FFO3 65283 Timer 2, High

4 $FF04 65284 Timer 3, Low

5 $FFOS5 65285 Timer 3, High

6 $FF06 65286 0-2 Vertical Scroll Position (Y)
3 Selection of 24/25 rows (1=25)
4 Switch screen off
5 Switch Bitmap Mode (1=ON)
6 Switch Ext. Colour Mode(1=0N)
7 Testbit (always 0)

7 $FFO7 65287 0-2 Horizontal Scroll Position (X)

3 Choice of 38/40 columns (1=40)

4 Switch Multicolour Mode on (l=on)
5 Switch Freeze Mode on (1=on)

6 PAL/NTSC-Mode (O=PAL, 1=NTSC)

7 RVS-vVideo (O=Hardware, l=Software)

——— > S " G P e G G g T Y T T SA T T S S G T S G S G YO S G R SR U G U G G S R e e P G N PR T e R R S S G G G G AR G . G S e

8 $FFO8 65288 Keyboard Matrix

page 180

9 $FFO9

10 FFOA

—— G - . 2 " B i T T T G T - —— Y

" S " G S~ S G G G G G G P - T 5

S S . s P D e S G T S Y s S O A T T G D U G U S U e Gy S AR G S, S e e S (e

65289

65290

NN U B WN - O

Interrupt-Sources
Not used
Raster Interrupt

(Light Pen, not possible with C-16)

Timer 1 Interrupt
Timer 2 Interrupt
Not used

Timer 3 Interrupt
Interrupt Bit

Interrupt Masking

Bit 8 of Raster Comparison
(Reg. 11)

Raster-Interrupt

(Light Pen, not possible with
C-16

Timer 1 Interrupt

Timer 2 Interrupt

Not used

Timer 3 Interrupt

Not used

——— - - - -

e e G B W G i G W S . S W o S U e T W GV e B G G T Y S D EUS G WY P R > B e Y B G o > e e O G G (PO S T G e

Bit 8-9 of Cursor Position
(Reg. 13)
Not Used

- G G e G S P e A e A T S - - —

Hardware Cursor Position (Bit 0-7)

Frequency Voice 1 (Bit 0-7)

- -

2 (Bit 0-7)

Frequency Voice 2 (Bit 8-9)
Not used

page 181

17 FF11 65297 0-3 Volume (0=off, 15=loud)
4 Switch voice 1 on (1=on)
5 Switch voice 2 rectangular on
(l=on)
6 Switch voice 2 noise on (l=on)
7 Sound Reload Bit
18 FF12 65298 0-1 Bit 8-9 Frequency Voice 1
(Reg. 14)
2 RAM/ROM Bank (O=RAM, 1=ROM)
3-5 Address of Bitmap RAM (Bit 13-15)
6- Not used
19 FF13 6529 0 ROM-Bank Status Bit (Read only)
1 Force Single Clock Bit (l=pro-
hibits double time frequency)
2-7 Address of character set (Bit
10-15)
20 FFl4 €5300 0-2 Not used
3-7 Address of Video-RAM (Bit 11-15)
21 FF15 6530 0-3 Background O Colour
4-6 Background 0 Luminiscence
7 Not used
22 FF16 65302 0-3 Background 1 Colour
46 " " Luminiscence
7 Not used
23 FF17 65303 0-3 Background 1 colour
4-6 " " " |uminiscence
7 Not used
24 FF18 6530 0-3 Background 3 Colour
4-6 " " Luminiscence
7 Not used
25 FF19 65305 0-3 Frame Colour
4-6 " Luminiscence
7 Not used

page 182

26 FF1A 6530 0-1 Bit 8-9 of Bit Map Reload (Reg.27)
2-7 Not used

27 FF1B 65307 Bit Map Reload of Character

Position (Bit 0-7)

28 FFIC 65308 0 Bit 8 of Raster-Row (Reg. 29)
1-7 Not used

29 FF1D 65309 Current Raster Row (Bit 0-7)

30 FF1E 65310 Current raster Column (Bit 1-8)

31 FF1F 65311 0-2 Vertical Sub Address
3-6 Flash Rate
7 Not used

62 FF3E 65342 ROM-Select (Write only)

63 FF3F 65343 RAM-Select (Write only)

page 183

4.7 KERNAL JUMP TABLE ($FF49-$FFFF)

ADDRESS ADDRESS CODE NAME DESCRIPTION
(HEX) (DEC)

T D L ol S T S I S U U e G e S P G G W G S T S G 0. S ot B Wt S T G G G W S s G Wt (. . W T T S G T s G S T G G > G S S G W~ T W s S > W

FFa9 65353 JMP $B7C2 Define FUNCTION key na.

after $76,addr. after $22-23,
length in accumulator)

$FF4C 65356 IMP $DC49 Print

$FF4F 65359 IMP $FBDS ‘ Print message
$FF52 65362 IMP $F445 Call M/C Monitor
$FF55~ 65365 Not used

$FF7E 65406 Not used

$FF7F 65407 $2A Not used

$FF80 65408 $84 "o

$FF8l 65409 IMP $DBALE CINT Initialise Editor
$FF8a 65412 JIMP $F30B IOINIT Initialise I/0

$FF87 65415 JMP $F352 RAMTAS Initialise RAM, open cassette
buffer, screen to $0COO

$FF8A 65418 JIMP $F2CE RESTOR Restore vectors
$FF8D 65421 JIMP $F2D3 VECTOR Vector RAM
$FF90 65424 IMP $F41A SETMSG Control KERNAL Messages

$FF93 65427 IOMP $EE4D SECOND Send sec. addr. to LISTEN

Page 184

$FF96
$FF99
$FF9C
$FFoF

$FFA2

$FFAS5
$FFA8
$FFAB

$FFAE
$FFBL

$FFB4
$FFB7

$FFBA

$FFBD
$FFCO
$FFC3
$FFC6
$FFCo
$FFCC
$FFCF

$FFD2

65430

65433

65436

65439

65442

65445

65448

65451

65454
65457

65460

65463

65466

65469

65472

65475

65478

65481

65484

65487

65490

JMP $EE1A
IMP $F427
IMP $F436
JMP $DB11

IMP $F423

JIMP $EC8B
JIMP $ECDF
JMP $EF3B

IMP $EF23
JIMP $EE2C

IMP $EDFA
IMP $F41C

IMP $F413

JMP $F40C

JMP ($0318)
IMP ($031A)
IMP ($031C)
IMP ($031E)
IMP ($0320)
IMP ($0322)

IMP ($0324)

TKSA Send sec. addr. to TALK
MEMTOP Set/read top RAM Pointer
MEMBOT Set/read bottom RAM Pointer
SCNKEY Scan keyboard

SETTMO Set Timeout for (optional)
IEC-Bus

ACPTR Input byte from serial port
CIOUT Output byte via serial port
UNTLK Command serial bus to UNTALK

UNLSN Com. serial bus to UNLISTEN
LISTEN Com.all dev. on bus to LISTEN

TALK Com. dev. on serial bus to TALK
READST Read I/0 Status Word

SETLFS Set Logical, Primary and
Secondary Address

SETNAM Determine file names
OPEN Open a logical file $EFS3
CLOSE Close a logical file $EESD
CHKIN Open channel for input $ED18

CHKOUT Open channel for output $ED6O

CLRCHN Close I/0 channels $EFOC
CHRIN Input Character $EBES
CHROUT Output Character $EC4B

Pagel85

$FFD5
$FFD8
$FFDB
$FFDE
$FFEL
$FFE4

$FFE7

$FFEA
$FFED
$FFFO

$FFF3

$FFF6
$FFF9
$FFFC

$FFFE

65493

65496

65499

65502

65505

65508

65511

65514

65517

65520

65523

65526

65529

65532

65534

IMP $F043
IMP $F194
IMP $CF2D
JMP‘$CF26
IMP ($0326)
IMP ($0328)

IMP ($032R)

JIMP $CEFO
IMP $D834
IMP $D839

IMP $FC19

STA $FF3E
IMP $F2A4
$FFF6

$FCB3

LOAD

SAVE

SETTIM

RDTIM

ST0P

GETIN

CLALL

UDTIM

SCREEN

PLOT

I0BASE

Load from peripheral device
Store on peripheral device

Set time

Read time

Scan STOP Key $F265
Read ch. from K.B. buffer $£BD9

Close all channels
& logical files $EFO8

Increment Time
Identify X, Y Screen Set-Up
Read/set X, Y Cursor Positiong

Base address-Reports back
on I/0 devices.

Switch-on ROM
Jump to Reset Routine
Processor Reset

Processor Interrupt

Page 186

4.8 COMPARISON TABLE C-64 AND C-16

In many newspapers, programs for the CBM 64 are published which could
also be of interest to the C-16 owner. While the programs to some
extent try to teach the C-64 BASIC Commands, which the C-16 has
built-in anyway (e.g. Graphics-Commands) and are therefore
uninteresting for you, there are surely some programs which you would
also like to have on your C-16. To facilitate the re-writing, we have
compiled a comparison chart of all identical addresses. Since many
C-64 programs have numerous PEEK and POKE commands, you can look for
the corrosponding C-16 Address in this table. You cannot, of course,
re-write everything (e.g. programs with Sprites) but what is
comparable is listed in the following table. The explanation of the
meaning of the address is very short; a more detailed description can
be found in the previous chapter.

ADDRESS ADDRESS ADDRESS ADDRESS LABEL MEANING

Cé64 hex Cé64 dec Clé hex Clé dec

- e ase -~ - G - - - - e e -

$0000 0 $0000 0 D6510 Data Direction Register

$0001 1 $0001 1 R6510 1/0-Port

$0003 3 $02F2 756 ADRAYL Pointer to Conv. GK>IN

$0005 | 5 $02F4 756 ADRAY2 " moor o INGK

$0007 7 $0007 7 CHARAC Search Character

$0008 8 $0008 8 ENDCHR FL:Search for inv. COMMA
$0009 9 $0009 9 TRMPOS Screen col. from 1. TAB

$000A 10 $000A 10 VERCK FL:0=LOAD, 1l=VERIFY

Page 187

$0008
$000C
$000D
$000E
$0010
$0011
$0012
$0013
$0014-
$0016
$0017-
$0019-
$0022-
$0026-
$002B-
$0020-
$002F -
$0031-
$0033-
$0035-

$0037-

11

12

13

14

16

17

18

19

20-

22

23

34~

38~

43-

45-

47-

49~

51-

$000B
$000C
$000D
$000E
$0010
$0011
$0012
$0013
$0014-
$0016
$0017-
$0019-
$0022-
$0026-
$002B-
$002D-
$002F -
$0031-
$0033-
$0035-

$0037-

11

12

13

14

16

17

18

19

20-

22

23~

34~

38~

43-

45-

47-

49-

51-

COUNT

DIMFLG

VALTYP

INTFLG

SUBFLG

INPFLG

TANSGN

CHANNL

L INNUM

TEMPPT

LASTPT

TEMPST

INDEX

RESHO

TXTTAB

VARTAB

ARYTAB

STREND

FRETOP

FRESPC

' MEMS1Z

Page 188

Input buffer pointer
FL:Standard field dimen.
Data type: $FF=String
Data type: $80=Integer
FL:User Function
FL:$00=INPUT, $40=CET
FL:TAN sign

FL:INPUT Comment

Total num. value
PTR:Temp. string stack.
Last String Address
Stack for temp.String
Field for aux. pointer
Field for multiplier.
PTR:Start BASIC text
PTR:Start BASIC Variable.
PTR:Start BASIC Arrays.
PTR:End BASIC Strings(+l)
PTR:Start of Strings
PTR:Aux. Strings

PTR:Top BASIC Address

$0039-
$003B-
$003D-
$003F -
$0041~
$0043
$0045
$0047-
$0049-
$004B-
$0061
$0062-
$0066
$0067
$0068
$0069
$006A-
$006E
$006F
$0070

$0071-

57-

59~

6l1-

63~

65~

67~

69-

71~

73~

75~

97

98-

102

103

104

105

106-

110

111

112

113~

$0039-
$0259-
$025B-
$003F -
$0041-
$0043
$0045-
$0047-
$0049-
$004B-
$0061
$0062-
$0066
$0067
$0068
$0069
$006A-
$006E
$006F
$0070

$0071~

57- CURLIN
601- OLDLIN
602- OLDTXT
63- DATLIN
65- DATPTR
67- INPPTR
69- VARNAM
71- VARPNT
73- FORPNT
75- OPPTR
97 FACEXP
98- FACHO
102 FACSGN
103 SGNFLG
104 BITS
105 ARGEXP
106- ARGHO
110 ARGSGN
111 ARISGN
112 FACOV
113- FBUFPT

Page. 189

Current BASIC Line
Previous BASIC Line
PTR:BASIC for CONT
Current DATA Line
PTR:Current DATA Address
V: INPUT Routine

Curr. BASIC Var. Name
Address of curr. vari.
Var. ch.for FOR/NEXT
Int. ch.for BASIC
Floating Point 1 Expo.

" " 1 Mant.

" " 1 sign
PTR:Polynom. Evaluation
Floating Point 1 overfl:

" " 2 Expo.

" " 2 Mant.

" "2 sign
Sign Comp. Acc 1 & 2
Floating pt. 1 rounding

PTR:Cassette Buffer

$0073~-
$0079
$007A-
$008B-
$0090
$0091
$0093
$0094
$0095
$0098
$0099
$009A
$009D
$00A0-
$00AC-

$O0AE~

$0087
$00B8
$0089
$00BA

$00BB-

115~

121

122-

139-

144

145

147

148

149

152

153

154

157

160-

172-

174~

183

184

185

186

187-

$0473-
$0479
$003B-
$0503-
$0090
$0091
$0093
$0094
$0095
$0097
$0098
$0099
$009A
$00A3-
$0098-

$009D-

$00AB
$00AC
$00AD
$00AE

$00AF -

1139~

1145

59-

1283-

144

145

147

148

149

151

152

153

154

163-

155~

157-

171

172

173

174

175-

CHRGET

CHRGOT

TXTPTR

RNDX

STATUS

STKEY

VERFCK

C3P0

BSOUR

LDTND

DFLTN

DFLTO

MSGFLG

TIME

SAL

EAL
end

FNLEN

LA

SA

FA

FNADR

Page 190

Read sub routine

Repeat read

PTR:Current Byte of Text
Start value for RND
Kernal I/0 Status Word
PTR:STOP/RVS-Key
FL:0=LOAD, 1=VERIFY
FL:Ser. Bus, Character
Character in buffer

No. of open files

Input device(Defaul=3)
Output dev. (Default=0)
FL:$80=Direct, $00=Pr.
Clock (approx. 1/60)
PTR:Cass.buf/Scn. scroll

PTR:Cassette end/Program

Lnth. of curr. file name
Logical Data file No.
Current Second. Address
Current device no.

PTR:Current file Name

$00C1-
$00C3-
$00C5
$00C6
$ooc7
$o00cs
$00C9-
$00CB
$00D
$00D1-

$00D3

$00D4
$00D6
$00D8
$00F 3~
$00F5-
$0100
$0200
$0259-

$0263-

193~

195~

197

198

199

200

201

203

208

209~

211

212

214

216

243~

245-

256~

512-

601~

611~

$0082-
$00B4-
$07F6
$00EF
$00C2
$00C3
$00C4~-
$00C6
$00C7
$00C8-

$00CA

$00CB
$00CD
$00CF
$00EA-
$00EC-
$0100-
$0200-
$0509-

$0513-

178-

180-

2038

239

194

195

196~

198

199

200~

202

203

205

207

234~

236~

256~

512-

1289~

1299~

Page 191

STAL

MEMUSS

LSTX

NDX

RVS

INDX

LSXP

SFDX

CRSW

PNT

PNTR
lin

QTSW

TBLX

INSRT

USER

KEYTAB

BUF

LAT

FAT

1/0 Start Address

Basic Loading Address
Currently pressed key
No of ch. in K.B. buffer
FL:RVS Character (l=Yes)
PTR:End of logical line
Cursor X/Y for Input
FL:Pressed key

FL:Input INPUT or GET
PNT:Cufrent Screen Char.

Cursor column in current

FL:Inverted comma mode
Cursor line

FL:INST Mode
PTR:Current Colour RAM
V: Keyboard Decod.
Processor Stack

System Input Buffer
Table of log. file no.

Table of device nos.

$026D-
$0277-
$0281-
$0283-
$0285
$0286
$0288
$0289
$028A
$028B
$028C
$028D
$028E
$028F -
$0291
$0292
$0300-
$0302-
$0304-
$0306-

$0308

621~

631~

641~

643~

645

646

648

649

650

651

652

653

654

655

657

658

768~

770~

772-

774-

776~

$051D-
$0527-
$0531-
$0533-
$0535
$0538
$053E
$053F
$0540
$0541
$0542
$0543
$0544
$0545-
$0547
$0548
$0300
$0302-
$0304~-
$0306-

$0308-

1309-
1319~
1329-
1331-
1333
1339
1342
1343
1344
1345
1346
1347
1348
1349-
1351
1352
768=-
770~
772-
774

776-

SAT

KEYD

MEMSTR

MSIZ

TIMOUT

COLOR

HIBASE

XMAX

RPTFLG

KOUNT

DELAY

SHFLAG

LSTSHF

KEYLOG

MODE

AUTCDN

IERRCR

IMAIN

ICRNCH

IQPLOP

IGONE

Page 192

Table of sec. addr.
Keyboard Buffer (FIFO)
PTR:Start Address RAM
PTR:End Address RAM
Fl:Time overrun IEC
Character colour

Video RAM Start, Page
Size of Keyboard Buffer
FL:Key repeat

Counting speed for repeat
Counter for repeat delay
Fl:Keys SHIFT, CTRL

Last SHIFT Sample
Pointer to key decod.
F1:$80=SHIFT ineffective
FL:Automatic Scrolling
V: BASIC-Error Message

V: BASIC Warm start

<

: BASIC Token gener.

V: BASIC Text listen

V: Execute BASIC-Command

$030A-
$030C

$030D

$030E

$030F

$0310

$0311~
$0314~-
$0316-
$031A-
$031C-
$031E-
$0320-
$0322-
$0324~
$0326-
$0328-
$032A~
$032C

$032E-

$0330-

778-

780

781

782

783

784

785-

788=

790~

794~

796~

798-

800~

802~

804~

806~

808~

810~

812~

8l4-

816~

$030A-
$07F2

$07F3

$07F4

$07F5

$0500

$0501-
$0314~
$0316-
$0318-
$031A-
$031C-
$031E-
$0320-
$0322-
$0324~
$0326~
$0328-
$032A-
$032C-

$032E-

778~

2034

2035

2036

2037

1280

1281-

788-

790~

792~

794~

796~

798~

800-

802~

804~

806~

808~

810-

812~

814-

Page 193

IEVAL
SAREG
SXREG
SYREG
SPREG
USRPOK
USRADD
CINV
CBINV
IOPEN
ICLOSE
ICHKIN
ICKOUT
ICLRCH
IBASIN
IBASOUT
ISTOP
IGETIN
ICLALL
USRCMD

ILOAD

V: BASIC Token Evaluation
Acc. for SYS-Command
X-Reg. for SYS-Command
Y-Reg. for SYS Command
SP-Reg. for SYS command
USR Jump

USR-Address (low/high)
V: Hardware-Interrupt
V: BRK-Interupt

V: Kernal OPEN

V: KERNAL CLOSE

V: KERNAL CHKIN

ve v CHKOUT
ve o ® CLRCHN
ve " CHRIN
ve " CHROUT
ve " STOP

Ve " GETIN
Vi " CLALL

User IRQ (Monitor)

V: Kernal-LOAD

$03332- 818~

$033C-
$0400~-
$0800-
$D011
$0012
$D016
$D020
$0021
$D022
$D023
$D024

$D800

828~

1024~

2048~

53265

53266

53270

53280

53281

53282

53283

53284

55296

$0330-
$0332-
$0co0-
$1000~
$FFO6
$FFOB
$FFO7
$FF19
$FF15
$FF16
$FF17
$FF18

$0800

816- ISAVE
818- TAPBUF
3076 VICSCN
4096~ BASBGN
65286
65291
65287
65305
65301
65302
65303‘
65304

2048 COLSCN

Page 194

V: Kernal-SAVE
Cassette~Buffer
Video-RAM
BASIC-RAM

Bit 7 is different!
Raster Interrupt
Bits 5-7 different!
Frame Colour
Background O colour
" 1

" 2

" 3 m

Colour-RAM

MEMORY MAP OF THE CBM 64

ADDRESS RDDRESS DESCRIPTION

(hex) (dec)
$0000-00FF 0- 255 Zero-Page
$0100-01FF 256- 511 Processor-Stack
$0200-03FF 512- 1023 Different Variables,Cassette Buffer
$0400-07E7 1024~ 2023 Video-RAM
$0800-SFFF 2048-40959 BASIC-RAM
$A000-BFFF 40960-49151 BASIC-Interpreter
$CO00-CFFF 49152-53247 Free RAM [(for sub-routines etc.)
$D000-D3FF 53248-54271 Video-Controller (Reg.up to $DOZ2E)
$D400-D7FF 54272-55295 Sound-Controller (Reg.up to $D41C)
$D800-DBE7 55296-56295 Colour-RAM
$DCCO-DCFF 56320-56575 CIA #1 : Keyboard, Joystick, Timer
$DDO0-DDFF 56576-56831 CIA #2 : Serial Bus, RS—232, Timer
$DEOO-DFFF 56832-57343 Not used; free for I/0-Extensions
$E000-FFFF 57344-65535 Kernal-ROM

Page 195

5. UTILITIES

i
5.1 RANDOM VALUE GENERATOR IN MACHINE CODE}

i
The following example demonstrates how to icreate random values in
machine code. This is of special interest #0 games programmers, who
frequently needs random values. In our example, a throw with two dice
is simulated. When you press the space barithe dice are played and
the result of our throw will be shown on the top of the screen. As
random start value, the raster beam is used.

>1000 00 OB 10 00 00 SE 34 31 :I...... 4
>1008 31 32 00 00 00 00 00 00 :rl2.....
>1010 A9 93 20 D2 FF 20 46 10 :r). 1?2 f
>1018 A9 OF 8D 11 08 8D 13 08 :I').v.s..
>1020 20 E4 FF C9 20 DO F9 20 :r $?i p9
>1028 35 10 8D 11 OC 20 35 10 :r5.... 5 |
>1030 8D 13 OC DO EB 20 50 10 :r...p+ p
>1038 FO FB C9 07 BO F7 C9 07 :r0;i.071 |
>1040 BO F3 18 69 30 60 AD OB :r03.)0 - |
>1048 FF A2 04 95 DO CA 10 FB :r?"..pj.
>1050 A9 EO 25 D4 09 20 85 D4 :r) %t. .
>1058 18 A2 04 B5 DO 75 DO 95 :r.".5p5p |
>1060 D5 CA 10 F7 18 A2 04 B5 :ruj.7.".
1068 DO 75 D5 95 DO CA 10 F7 :rp5u.pj.
>1070 18 A2 02 B5 DO 75 D7 95 :r.".5p5w
>1078 DO CA 10 F7 A5 DO 60 AA :rpj.7%p

. 1010 A9 93 LDA #$93

. 1012 20 D2 FF JSR $FFD2

. 1015 20 46 10 JSR $1046 |
. 1018 A9 OF LDA #$OF
. 101A 8D 11 08 STA $08l11
. 101D 8D 13 08 STA $0813
. 1020 20 E4 FF JSR $FFE4
. 1023 €9 20 CMP #320
. 1025 DO F9 BNE $1020
. 1027 20 35 10 JSR $1035

Page 196 |

. 102A
. 102D
. 1030
. 1033
. 1035

1038

. 103A

103C

. 103E

1040
1042
1043
1045
. 1046

. 1049

104B
104D
104E
1050
1052
1054
1056
1058

. 1059

1058

. 105D

105F
1061
1062
1064

. 1065

1067

. 1069
. 106B

106D
106E
1070
1071

. 1073

1075
1077

. 1079

8D
20
8D
DO
20
FO
Co
BO
co
80
18
69
60
AD
R2
95
CA
10
R9
25
09
85
18
R2
B5
75
95
CA
10
18
A2
B5
75
95
CA
10
18
A2
B>
75
95
CA

11
35
13
EB
50
FB
07
F7
07
F3

30

0B
04
DO

FB
EC
D4
20
D4

04
0o
DO
D5

F7

04
DO
D5
DO

F7

02
DO
D7
DO

0C STA $0Cl11
10 JSR 31035
OC STA $0C13

BNE $1020

10 JSR $1050

FF

BEQ $1035
CMP #$07
BCS $1035
CMP #$07
BCS $1035
CLC

ADC #$30
RTS

LDA $FFOB
LDX #$04
STA $DO, X
DEX

BPL $104B
LDA #$EO
AND $D4
ORA #$20
STA $D4
CcLC

LDX #$04
LDA $DO,X
ADC $DO,X
STA $D5,X
DEX

BPL $L05B8
cLC

LDX #$04
LDA $DO,X
ADC $D5,X
STA $D0,X
DEX

BPL $1067
CcLC

LDX #$02
LDA $DO,X
ADC $D7,X
STA $DO,X
DEX

Page 197

. 107A 10 F7 BPL $1073
. 107C A5 DO LDA $DO
. 107E 60 RTS

Page 198

5.2 JOYSTICK SCAN IN MACHINE CODE

The following routine scans a joystick in machine code. We have
already used this program several times in the Graphics Chapter as
sub routine. It can, however, also be integrated in your own program.

>1000 00 OC 10 00 00 9E 34 31 :I......41
>1008 31 32 00 00 00 00 00 00 :rl2......
>1010 AS FD 8D 08 FF AD 08 FF :I)=..?-.?
>1018 AO 00 A2 00 4A BO Ol 88 :r .".jO..
>1020 4A BO Ol C8 4A BO OL CA :rj0.hjo.j
>1028 4A BO Ol E8 86 DO 84 D1 :rj0.(.p.q
>1030 29 08 60 AA AA AA AA AA :T), ***x¥

. 1010 a9 FD LDA #3$FD
. 1012 8D 08 FF STA $FF08
. 1015 AD 08 FF LDA $FFO8
. 1018 A0 00 LDY #$00
. 101A A2 QO LDX #$00

. 101C 4A LSR
. 101D BO Ol BCS $1020
. 101F 88 DEY
. 1020 4A LSR
. 1021 BO 01 BCS $1024
. 1023 C8 INY
. 1024 4A LSR
. 1025 BO 01 BCS $1028
. 1027 CA DEX
. 1028 4A LSR
. 1025 BO 01 BCS $102C
. 102B E8 INX

. 102C 86 DO STX $00
. 102E 84 D1 STY $D1
. 1030 29 08 AND #3$08
. 1032 €0 RTS

Page 199

5.3 TURBO MODE FOR THE C 16

For all those, who think the C 16 is too slow, we can show you a
trick with which it will become about 30% faster. Since we live in a
Turbo age, we simply call it the Turbo Mode. The trick is to switch
the screen off. Of course this is impractical if you want to create
Graphics and see them at the same time, but not if you have
mathematical problems to solve, where you don't always have to look
at the screen. The speed advantage arises from the fact that the
Video~Chip TED doesn't slow down the Micro Processor anymore once the
screen is switched off. A small demo program, first in Turbo Mode and
then in the normal mode, will show you how it works and how much time
you can save.

100 POKE 65286,PEEK(65286) AND 239
110 GOSUB 150

120 POKE 65286,PEEK(65286) OR 16
130 GOSUB 150

140 END

150 T=T1

160 FOR I=1 TO 1000

170 ¢+ B=B+l

180 NEXT I

190 PRINT USING "##.##";(TI-T)/60
200 RETURN

Page 200

5.4 OLD (RESTORING A PROGRAM AFTER NEW)

If you accidently type NEW or press the RESET button without having
saved the program beforehand,all is not lost. We will show you how
you can retreive the program using OLD Program. After NEW or a Reset,
you only have to type SYS 1630 and your program is back again. The
machine program is stored in an area which is not erased on Reset. If
you load the OLD Program before you start programming, it will then
be available any time you need it.

PROCEDURE

Type in the following BASIC Program and store it on a cassette or
disc before you test it. Enter the monitor to save theprogram.

s"OLD",01,065E ,06C9----Cass.
S"OLD",08,065E ,06C9----Disc

When you run it and there is no error then it is ready for use. You
can try it on the Basic programme you just wrote. Type NEW and then:
SYS 1630. It should now be back again (try LIST). The only thing
which might not be correct is the first line number.

To load the program, enter monitor and 1load the program with L
command.

The Basic program is no longer required as it has been saved as M/C
program,

100 FOR I=1630 to 1630+106

110 : READ A

120 : POKE I,A

130 : C=C+A

140 NEXT I |

150 IF C<>10560 THEN PRINT "ERROR™ : STOP

160 DATA 165,43,133,3,165,44,133,4,160,4,177,3,240,3,200,208
170 DATA 249,200,152,32,189,6,160,0,165,3,145,43,200,165,4,145
180 DATA 43,200,169,0,145,43,200,145,43,165,43,133,3,165, 44,133

Page 201

190 DATA 4,160,0,169,4,32,189,6,177,3,240,7,32,187,6,169

200 DATA 0,240,245,32,187,6,177,3,240,4,169,0,240,234,32,187
210 DATA 6,32,187,6,165,3,133,45,165,4,133,46,96,169,1,24
220 DATA 101,3,133,3,169,0,101,4,133,4,96

Page 202

5.5 MERGE (LINKING OF PROGRAMS)

Although the C-16's BASIC is very comprehensive and leaves little to
be desired, there is unfortunately one command missing which is very
practical: MERGE. This allows linking of two BASIC programs. If you
have a library of sub routines, you can always load these and 1link
them to your current program using MERGE routine.

PROCEDURE
Type in the following program and save it on a cassette or disc by

first entering the MONITOR. Use the following instructions.

S"MERGE",01,06C9 ,06E8=====~ Cass.
S"MERGE"™,08,06C9,06E8=~==~ Disc

Type RUN. If there is an error message, check your listing, OLD is
stored in the part of memory which is not effected by RESET.

To link two programmes

1. Load MERGE

2. Load your first program from Cassette or Disk.

3. Type: SYS 1737

4. Load your second program.

5. Type: SYS 1759

Both your programs are now linked. You may have to re-number the new

program. Avoid using low line numbers in your sub routines. It's best
to give your sub-routines high line numbers (e.g. 62000, 63000).

Page 203

100
110
120
130
140
150
160
170

FOR I=1737 TO 1737430

READ A

POKE I,A

C=C+A

NEXT I

IF C<>3786 THEN PRINT "ERROR":STOP :

DATA 165,43,133,232,165,44,133,233,56,165,45,233,2,133,43,165
DATA 46,233,0,133,44,96,165,232,133,43,165,233,133,44,96

Page 204

5.6 VARLIST (LIST OF ALL USED VARIABLES)

If you have created a program in BASIC and lost track of the
variables you have already used, then this auxiliary program is
useful. It gives a list of all variables so far used and states their
type: FLOATING POINT (FLO), INTEGER (INT) or STRING (STR).

PROCEDURE

Type in the BASIC Program and store it. If there is no error, you can
try it out. Type: SYS 16100 and the variables I, A and C used in the
BASIC Loader will be printed.

100 POKE 55,227 : POKE 56,62 : CLR
110 FOR I=16100 TO 16100+273

120 : READ A
130 : POKE I,A
140 : C=C+A
150 NEXT I

160 IF C<>30678 THEN PRINT "ERROR":STOP

170 DATA 165,45,133,2,165,46,133,3,165,2,197,47,208,6,165,3

180 DATA 197,48,240,40,160,0,177,2,141,227,63,201,128,176,30,200
190 DATA 177,2,201,128,176,65,32,106,63,32,211,63,169,7,24,101

200 DATA 2,133,2,169,0,101,3,133,3,76,236,62,96,56,233,128

210 DATA 141,227,63,200,177,2,201,128,240,24,56,233,128,141,228,63
220 DATA 32,134,63,32,147,63,174,238,63,32,164,63,32,205,63,76

230 DATA 13,63,169,32,76,49,63,240,24,56,233,128,141,228,63,32

240 DATA 134,63,32,147,63,174,240,63,32,164,63,32,205,63,76,13

250 DATA 63,169,32,76,80,63,201,0,240,19,141,228,63,32,134,63

260 DATA 32,147,63,174,239,63,32,164,63,32,205,63,96,169,32,76

270 DATA 110,63,173,227,63,32,183,63,173,228,63,32,183,63,96, 162
280 DATA 15,142,241,63,169,32,32,183,63,174,241,63,202,208,242,96
290 DATA 160,3,142,242,63,189,229,63,32,183,63,174,242,63,232,136
300 DATA 208,240,96,141,243,63,140,245,63,142,244,63,32,210,255,174
310 DATA 244,63,172,245,63,173,243,63,96,169,13,32,183,63,96,32
320 DATA 228,255,201,32,240,1,96,32,228,255,201,32,208,249,96,0
330 DATA 0,73,78,84,70,76,79,83,84,82,0,3,6,0,0,0,0,0

Page 205

5.7 CROSS (PRODUCES CROSS REFERENCE FOR BASIC COMMANDS

This auxiliary program produces a list of all BASIC Keywords and
indicates in which lines they were used. In the lines from 63460
onwards, you can indicate the keywords which interest you and their
codes (the Codes or Tokens of the BASIC Keywords are listed in
chapter 6.1). If you want to add one of your own, type it in from
63480 together with the Token and increment the value in line 63450,

PROCEDURE

Type in the program and store it. Load the program which interests
you and MERGE it with the CROSS Program (see 5.5 MERGE). Type: RUN
63000 and answer the question if output is .to be on screen or
printer, Be a little patient because the program has to go through
the whole BASIC Program for each keyword.

63000 RESTORE 63450 : READ NU : DIM KW$(NU),K(NU)
63010 FOR I=1 TO NU : READ KW$(I),K(I) s NEXT I
63020 SCNCLR : INPUT "SCREEN OR PRINTER (S/P)";Q$
63030 IF Q$="P" THEN OPEN 4,4 : CMD 4 : GOTO 63060
63040 IF Q$<OM"S" then 63020

63050
63060 FOR I=1 to NU

63070 : K=K(I)

63080 : PRINT KW$(I) : CN=0 : CO=0
63090 : PT=PEEK(43)+PEEK(44)%*256

63100 : LN=0

63110 : DO WHILE LN<>63000

63120 : NL=PEEK(PT)+PEEK(PT+1)*256
63130 ¢ LN=PEEK(PT+2)+PEEK(PT+3)%*256
63140 : IF LN=63000 THEN EXIT

o

63150 : E=0

63160 ¢ J=PT+4

63170 : DO WHILE J<O>PT+80

63180 : CH=PEEK(J)

63190 ¢ IF CH=34 THEN GOSUB 63320 : IF E THEN EXIT
63200 : IF CH=K THEN GOSUB 63390

Page 206

63210

63220 :

63230

63240

63250

63260 :

63270
63280
63290
63300

63310

63320

63330 :
63340
63350 :

63360
63370
63380
63390
63400
63410
63420
63430
63440
63450
63460
63465
63470

: IF CH=0 THEN EXIT
J=j+1
¢ LOOP
PT=NL
LOOP
IF CN<>O THEN PRINT
: PRINT "AMMOUNT=";CN : PRINT
NEXT I
IF Q$="D" THEN PRINT#4 : CLOSE 4
END

DO WHILE CH<>O

J=J+1 : CH=PEEK(J)

IF CH=34 THEN EXIT

IF CH=0 THEN E=1 : EXIT

LOOP

RETURN

IF CO=6 THEN CO=0 : PRINT

CO=CO+1 : LN$=STR$(1n) : LN$=MID$(LN$,2,LEN(LNS))
IF LEN(LN$)<5 THEN LN$=MID$(*00000",1, (5-LEN(LN$)))+LN$
PRINT LN$;" "5 : CN=CN+l

RETURN

DATA 10

DATA DO,235,EXIT,237,FOR,129,G0SUB,141,G0T0,137
DATA IF,139,L00P,236,NEXT,130

DATA RETURN, 142, WHILE,253

Page 207

RAPPEDIX

6.1 THE TOKENS OF BASIC KEYWORDS

As you perhaps know, each BASIC command is stored in the program as
so called token i.e. it appears in the memory of the C 16 as a byte
and not as a whole word, which saves a lot of memory. Listed below
are all the keywords and their tokens.

TOKEN TOKEN BASIC KEYWORD
(DEC.) (HEX.)

128 $80 END
129 $81 FOR
130 $82 NEXT
131 $83 DATA
132 $84 INPUT#
133 $85 INPUT
134 $86 DIM
135 $87 READ
136 $88 LET
137 $89 GOTO
138 $8A RUN
139 $8B IF

140 $8C RESTORE
141 $8D GOSUB
142 $8E RETURN
143 $8F REM
144 $90 STOP
145 $91 ON

146 $92 WAIT
147 $93 LOAD
148 $94 SAVE
149 $95 VERIFY
150 $96 DEF
151 $97 POKE
152 $98 PRINT#

Page 208

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

$99
$9A
$98
$sC
$9D
$9E
$9F
$A0
$A1
$A2
$A3
$A4
$A5
$A6
$A7
$A8
$A9
$AA
$AB
$AC
$AD
$AE
$AF
$B0
$B1
$B82
$B3
$B4
$85
$Bs
$B87
$B8
$B89
$BA
$88
$BC
$B8D
$BE
$BF
$co
$C1
$Cc2

PRINT
CONT
LIST
CLR
CMD
SYS
OPEN
CLOSE
GET
NEW
TAB(
T0

FN
SPC(
THEN
NOT
STEP

N

AND
OR

FAN [V4

SGN
INT
ABS
USR
FRE
POS
SQR
RND
LOG
EXP
CoS
SIN
TAN
ATN
PEEK

Page 209

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

$C3
$C4
$C5
$cé
$CA
$C8
$C9
$CA
$CB
$CC
$CD
$CE
$CF
$00
$D1
$D2
$D3
$D4
$D5
$D6
$D7
$D8
$D9
$DA
$08B
$DC
$0D
$DE
$OF
$EO
$E1
$E2
$E3
$E4
$ES
$E6
$E7
$ES
$E9
$EA
$EB
$EC

LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHT$
MID$
GO

RGR
RCLR
RLUM
Joy
RDOT
DEC
HEX$
ERR$
INSTR
ELSE
RESUME
TRAP
TRON
TROFF
SOUND
VOL
AUTO
PUDEF
GRAPHIC
PAINT
CHAR
BOX
CIRCLE
GSHAPE
SSHAPE
DRAW
LOCATE
COLOR
SCNCLR
SCALE
HELP
DO
LOOP

Page 210

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

$ED
$EE
$EF
$FC
$F1
$F2
$F3
$F4
$F5
$F6
$F7
$F8
$F9
$FA
$FB
$FC
$FD

$FE

$FF

EXIT
DIRECTORY
DSAVE
DLOAD
HEADER
SCRATCH
COLLECT
COPY
RENAME
BACKUP
DELETE
RENUMBER
KEY
MONITOR
USING
UNTIL
WHILE
NOT USED

Page 211

The book contains all the essenticl informationtheat youneedto
know whenusing your Plus 4 ond C16. All the important aspects
ure exploained in detgil, the items already covered in the manual
raceived with the computers have baan emitiad.

The grophics immd mochine lemguage are specially streased and
demonstrated with example programmes.

Graphics

@ Grophic possihilitiez of built in video chip TED.

® High-Res multicelour ond sxtended coleur mede in machine
code and basio,

® Programming the raster internapt.

Sound

8 DMusic with hosic comaynommd

Sound progromming of TED in machine code.
#® Intermupt control of musie.

Machine Code

¥ Introduction course.

® Tips and Tricks for Beginners

® Commaonds of 7501 Micro Processaor.

@ Intreduction for using KERNAL routines.

Useful Data
® Detaied memopry map with exact description of each
peak/poke,
® Lorge comparison chot of CBEME4 and C16 for easy con-
VeSO,
® lltilities,
H (4 LI R
FRIGE £7.95

& Ad - \ ANCO S0FTWARE. 4 WEST GATE HOUSE,
— ‘ £ SPITAL STREET, DARTFORD, KENT DA1 2ZEH.
2= e Telephone: 0322 925713792618 7

